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Input Layer, Hidden Layers, 
Output Layer

Output layer

Here predicting a 
supervised target

Hidden layers

These learn more abstract 
representations as you 
head up

Input layer

This has raw sensory 
inputs
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Automating Feature
Discovery
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Learning multiple levels of 
representation
Successive model layers learn deeper intermediate representations

Layer 1

Layer 2

Layer 3

High-level
linguistic representations

(Lee, Largman, Pham & Ng, NIPS 2009)
(Lee, Grosse, Ranganath& Ng, ICML 2009)
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Prior: underlying factors &concepts compactly expressed w/ multiple levels of abstraction

Parts combine
to form objects



Why Multiple Layers? The World is 
Compositional

Hierarchy of representations with increasing level of abstraction

Each stage is a kind of trainable feature transform

Image recognitionΥ tƛȄŜƭ Ҧ ŜŘƎŜ Ҧ textonҦ ƳƻǘƛŦ Ҧ ǇŀǊǘ Ҧ ƻōƧŜŎǘ

TextΥ /ƘŀǊŀŎǘŜǊ Ҧ ǿƻǊŘ Ҧ ǿƻǊŘ ƎǊƻǳǇ Ҧ ŎƭŀǳǎŜ Ҧ ǎŜƴǘŜƴŎŜ Ҧ ǎǘƻǊȅ

SpeechΥ {ŀƳǇƭŜ Ҧ ǎǇŜŎǘǊŀƭ ōŀƴŘ Ҧ ǎƻǳƴŘ Ҧ Χ Ҧ ǇƘƻƴŜ Ҧ ǇƘƻƴŜƳŜ Ҧ ǿƻǊŘ

Trainable 

Classifier
Low-Level
Feature

Mid-Level
Feature

High-Level
Feature



Learning Multiple Levels of Abstraction

ÅThe big payoff of deep learning is to allow 
learning higher levels of abstraction

ÅHigher-level abstractions disentangle the 
factors of variation, which allows much easier 
generalization and transfer
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Deep Learning: Learning an Internal 
Representation

ÅUnlike other ML methods with either

Åno intermediate representation (linear)

Åor fixed (generally very high-dimensional) 
intermediate representations (SVMs, kernel 
machines) 

ÅWhat is a good representation? Makes other 
tasks easier.
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Easy Learning



Local Smoothness Prior: 
Locally Capture the Variations



ML 101. What We Are Fighting 
Against:  The Curse of 
Dimensionality

To generalize 
locally, need 
representative 
examples for all 
relevant 
variations!

Classical solution: 
hope for a 
smooth enough 
target function, 
or make it 
smooth by 
handcrafting 
good features / 
kernel



Bypassing the curse of 
dimensionality
We need to build compositionalityinto our ML models 

Just as human languages exploit compositionality to give 
representations and meanings to complex ideas

Exploiting compositionality gives an exponential gain in 
representational power

Distributed representations / embeddings: feature learning

Deep architecture: multiple levels of feature learning

Prior: compositionality is useful to describe the 
world around us efficiently
11



Distributed Representations: The Power of 
Compositionality ðPart 1

ÅDistributed (possibly sparse) representations, learned from 
data, can capture the meaningof the data and state

ÅParallel composition of features: can be exponentially 
advantageous
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DistributedNot Distributed



Deep Representations: The Power of Compositionality ð
Part 2

ÅLearned function seen as a composition of simpler operations, 
e.g. inspired by neural computation

ÅHierarchy of features, concepts, leading to more abstract 
factors enabling better generalization

ÅAgain, theory shows this can be exponentially advantageous
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Why multiple layers? The world is compositional



Each feature can be discovered without the 
need for seeing the exponentially large 
number of configurations of the other
features

ÅConsidera network whosehiddenunitsdiscoverthe following
features:

ÅPerson wearsglasses

ÅPerson is female

ÅPerson isa child

ÅEtc.

If eachof n featurerequiresO(k)parameters, needO(nk) examples

Non-parametricmethodswould requireO(nd) examples
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9/25/2016 sofaloca.com/themes/ypanel/ionicons/src/ios7-glasses-outline.svg

http://sofaloca.com/themes/ypanel/ionicons/src/ios7-glasses-outline.svg 1/1



Under review as aconferencepaper at ICLR 2015

People Lighting

Animals

Tables

Seating

Object counts in SUN
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Object counts of most informative objects for scene recognition

Counts of CNN units discovering each object class.
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Figure 9: (a) Segmentationsfrom pool5 in Places-CNN. Many classes are encoded by several units
covering different object appearances. Eachrow shows the 3 top most conýdent images for each
unit. (b) Object frequency in SUN (only top50 objectsshown), (c) Countsof objectsdiscovered by
pool5 in Places-CNN. (d) Frequency of most informativeobjects for sceneclassiýcation.

4 EMERGENCE OF OBJECTS AS THE INTERNAL REPRESENTATION

As shown before, a large number of units in pool5 are devoted to detecting objects and scene-
regions (Fig. 8). But what categories are found? Is each category mapped to a single unit or are
theremultiple units for each object class? Can we actually usethis information to segment a scene?

4.1 WHAT OBJECT CLASSES EMERGE?

Fig. 9(a) showssomeunits from thePlaces-CNN grouped by theobject class they seem to bedetect-
ing. Each row showsthetop threeimagesfor aparticular unit that producethestrongest activations.
The segmentation shows the region of the image for which the unit is abovea threshold. Each unit
seems to be selective to a particular appearance of the object. For instance, there are 6 units that
detect lamps, each unit detecting a particular type of lamp providingýner-grained discrimination;
there are 9 units selective to people, each one tuned to dif ferent scales or people doing different
tasks. ImageNet hasan abundanceof animals among the categoriespresent: in the ImageNet-CNN,
out of the 256 units in pool5, there are 23 units devoted to detecting dogs or parts of dogs. The
categoriesfound in pool5 tend to follow the targetcategoriesin ImageNet.

To answer the question of why certain objects emerge from pool5, we tested the Places-CNN on
fully annotated images from the SUN database (Xiao et al., 2014). The SUN database contains
8220fully annotated images from the same 205place categoriesused to train Places-CNN. There
areno duplicate imagesbetweenSUN and Places. We use SUN instead of COCO (Lin et al., 2014)
aswe needdense object annotations to study what the most informative object classes for scene
categorization are, and what the natural object frequencies in scene images are. For this study, we
manually mapped thetagsgiven by AMT workersto theSUN categories. Fig. 9(b) showsthesorted
distributionof object counts in theSUN databasewhich followsZipfôs law.

One possibility is that the objects that emerge in pool5 correspond to the most frequent onesin the
database. Fig. 9(c) shows the counts of units found in pool5 for each object class (same sorting
as in Fig. 9(b)). The correlation betweenobject frequency in the database and object frequency
discovered by theunits in pool5 is 0.54. Another possibility is that the objects that emerge are the
objectsthat allow discriminatingamongscenecategories. To measuretheset of discriminant objects
weused theground truth in theSUN databaseto measuretheclassiýcation performanceachieved by
eachobjectclass for sceneclassiýcation. Thenwe count how many times each object class appears
asthe most informativeone. This measuresthe numberof scene categoriesa particular object class
is the most useful for. The countsare shown in Fig. 9(d). Note the similarity between Fig. 9(c) and
Fig. 9(d). The correlation is 0.84 indicating that the network is automatically identifying the most
discriminativeobject categories to a largeextent.
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Hidden Units Discover Semantically
Meaningful Concepts

Å Zhou et al & Torralba, arXiv1412.6856 , ICLR 2015

ÅNetwork trainedto recognizeplaces, not objects
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Under review as aconferencepaper at ICLR 2015

Figure10: Interpretation of a pictureby different layers of the Places-CNN using the tagsprovided
by AMT workers. Theýrst shows theýnal layer output of Places-CNN. The other three show
detection results alongwith theconýdencebased on theunitsôactivation and thesemantic tags.

Fireplace (J=5.3%, AP=22.9%)

Wardrobe (J=4.2%, AP=12.7%)

Billiard table (J=3.2%, AP=42.6%)

Bed (J=24.6%, AP=81.1%)

Mountain (J=11.3%, AP=47.6%)

Sofa (J=10.8%, AP=36.2%)

Building (J=14.6%, AP=47.2%) Washing machine (J=3.2%, AP=34.4%)
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Figure 11: (a) Segmentation of images from the SUN database using pool5 of Places-CNN (J =
Jaccard segmentation index, AP = average precision-recall.) (b) Precision-recall curves for some
discovered objects. (c) Histogram of AP for all discovered object classes.

Note that there are 115 units in pool5 of Places-CNN not detecting objects. This could be due to
incomplete learning or a complementary texture-based or part-based representation of the scenes.

4.2 OBJECT LOCAL IZATION WITHIN THE INNER LAY ERS

Places-CNN is trained to do scene classiýcation using the output of theýnal layer of logistic re-
gression and achieves thestate-of-the-art performance. From our analysis above, many of the units
in the inner layers could perform interpretable object localization. Thus we could use this single
Places-CNN with the annotation of units to do both scene recognition and object localization in a
single forward-pass.Fig. 10 shows an exampleof the output of different layers of the Places-CNN
using thetagsprovided by AMT workers. Bounding boxesare shown around the areas where each
unit is activated within its RF abovea threshold.

In Fig. 11 we evaluate the segmentation performance of the objects discovered in pool5 using the
SUN database. The performance of many units is very high which provides strong evidence that
they are indeed detecting thoseobject classes despite being trained for sceneclassiýcation.

5 CONCLUSION

Weýnd that object detectors emerge as a result of learning to classify scene categories, showing
that a single network can support recognition at several levels of abstraction (e.g., edges, textures,
objects, and scenes) withoutneeding multiple outputs or networks. While it is common to train a
network to doseveral tasksandto usetheýnal layer astheoutput, hereweshow that reliableoutputs
canbe extractedat eachlayer. As objects are the parts that composea scene, detectors tuned to the
objects that are discriminant between scenes are learned in the inner layers of the network. Note
that only informative objects for speciýc scene recognition tasks will emerge. Future work should
explore which other tasks would allow for other object classes to be learned without the explicit
supervision of object labels.
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Linear regression, 
linear neuron

each component of x weighs differently on the response.

input x

output linearoutput neuron

layer of input neurons

Intuitive understanding of the dot product:

Neural network terminology:



Estimating a conditional expectation 
with the quadratic loss

Å If the loss function is                           

Å then the network estimates

Å if f has enough capacity and data (and training) to capture this
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Typically, to predict a continuous quantity, minimize quadratic loss 



Logistic Regression

ÅPredictthe probabilityof a categoryy, 
giveninput x

ÅP(Y=y | X=x)

ÅSimple extension of linearregression
(binarycase):

ÅP(Y=1 | X=x) = sigmoid(b + w. x)

ÅTrain by tuning (b,w) to maximize
averagelog-likelihood

Average( log P(Y=y|X=x))

over training pairs (x,y), by gradient-
basedoptimization

ÅThis isa veryshallowneural network(no 
hiddenlayer)18

input x

logisticoutput 
neuron

P(Y=1|x)



Hidden units

(from

Hugo 
Larochelle)
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ARTIFICIAL NEURON
2

Topics: connection weights, bias, activation function

Neuron pre-activation (or input activation):

Neuron (output) activation

     are the connection weights

    is the neuron bias 

         is called the activation function


