
Deep Nets: Tricks and Tips

Yoshua Bengio
August 29th, 2017 @ DS3

Data Science SummerSchool

Hyper - parameters

ÅParameters: optimized by gradient-based optimization on the
training set

ÅHyper-parameters: design decisions and settings of the
optimization procedure

ÅOptimized based on performance on a validation set disjoint
from training set.

ÅA disjoint test set is used to obtain final unbiased estimation of
generalization performance.

ÅTraining, validation and test sets are subsets of randomized
(shuffled)data, to mimic iid assumption

2

Training set Validation set Test set

Hyper - parameters of MLPs

ÅGlobal learning rate

ÅNumber of training epochs (passes over training set)

ÅNumber of neurons per layer

ÅDepth (number of layers)

ÅChoice of activation function(s)

ÅRegulariationcoefficients (L1, L2, etc.)

ÅNoise injection & dropout

ÅLoss function and output non-linearity

ÅMinibatchsize (with parallel computation within minibatch)

ÅWeight normalization method (e.g. batch normalization)

Å Input and targets normalization

ÅData deformations

ÅEtc.

3

Nested optimisation of parameters and
hyper - parameters

ÅFor each considered configuration of hyper-parameters

ÅTrain parameters with this configuration (optimize train loss)

ÅMeasure resulting model’s validation error

ÅKeep this configuration if it’s the best seen up to now

ÅOptionally: Retrain with training+validationset

ÅMeasure resulting model’s test error

4

Choosing the best = optimizing

ÅPicking the best hyper-parameter configuration in the given set is
a form of optimization (or hyper-optimization)

ÅChoosing hyper-parameters based on training set would lead to
high-capacity choices with overfitting (hence need a validation set)

ÅOptimizing a particular average taken over a dataset yields a
biased (optimistic) value of that average (hence need a test set to
obtain an unbiased estimator of generalization ability)

ÅČ We need 3 datasets: training, validation, test

5

Cross- Validation

Å If your training set is very small (e.g. 1000 examples), the
training/validation/test split gives too few validation or test
examples to obtain statistically significant comparisons

ÅBut each training run is very fast!

ÅWe can repeat the training+testrun many times with different
subsets of the data, allowing to use more (or all) of the
examples as part of the test set (at least once).

ÅOnce such technique is k-fold cross-validation

6

T: part of Training set
V: part of Validation set

Run 1: T T T T V
Run 2: T T T V T
Run 3: T T V T T
Run 4: T V T T T
Run 5: V T T T T

5 subsets
5-fold XV

Sequential Validation

Å If the data come from a time-series, and we want to use the
predictor from past data to act in the future, we need a
different estimator of generalization performance called
sequential validation

ÅWe simulate what would have happened if we had had data
only up to time t, acting on that trained model over a block of
following examples (acting as test), then repeat with increased t
and average the test performances over all these blocks.

7

T V t
T T V t
T T T V t
T T T T V t

T: part of Training set
V: part of Validation set
t: part of test set
Use all the past Vsto select models
Use all the test blocks to evaluate overall performance

Hyper - Optimization

ÅManual search

ÅDon’t use test error!

ÅSlow and sequential, but some trained humans do this better
than any machine, for now.

ÅNot systematic, harder to reproduce

ÅGridsearch: inefficient with more than 2 hyper-parameters

ÅRandomsearch(Bergstra& Bengio, 2012, JMLR)

ÅSimple, robust& parallelezable

ÅBayesianoptimisation (sequential, automated), especiallygood
for non-experts, but still needto set intervals

8

Grid Search for Hyper - Parameters

9

Å Discretizehyper-parametervalues

Å Formcross-productof values acrossall
hyper-parameters: the grid

Å Launcha trial training + validation
error measurementfor eachelement
of the grid

Å Can be parallelizedon a cluster, but
mayneedto redo failedexperiments,
until all grid is filled

Å Exponentialin # of hyper-parameters!

Random Sampling of Hyperparameters (Bergstra&

Bengio 2012)

ÅRandom search: simple & efficient

ÅIndependently sample each HP, e.g.

l.rate~exp(U[log(.1),log(.0001)])

ÅEach training trial is iid

ÅIf a HP is irrelevant grid search is wasteful

ÅMore convenient: ok to early-stop, continue
further, etc.

10

L1 regularisation to remove
weights and inputs

11

Add a term that pushes weights or groups of weights to 0

prediction error +

pushes individual weights to 0, whereas

prediction error +

is trying to make all the weights in the group go to 0

Weight Initialisation

(from

Hugo Larochelle)

12

Attempts to be
invariant to the
size of the
layers

Early Stopping :
free lunch (T jobs for the price of 1)

(from

Hugo
Larochelle)

13

Regularizing by injecting noise:

dropout
(from

Hugo
Larochelle)

No noise
at test
time.

14

Dropout Regularizer: Super - Efficient Bagging

15

*

……

Diagnostic: overfitting vs underfitting ?

(from

Hugo
Larochelle)

16

or collect more data
or semi-supervised

How to know if you are overfitting or
underfitting ?

Overfitting: if you increase capacity (number of parameters,
training time, better optimizer, smaller regularization coefficient,
etc.), test or validation error increase

17

Curriculum Learning

Guided learning helps training humans

and animals
Shaping

Start from simpler examples / easier tasks
(Piaget 1952, Skinner 1958)

Education

(Bengio et al ICML 2009)

Curriculum learning as a
Continuation Method

Track local

minima

Final solution

Easy to find

minimum

(Bengio et al ICML 2009)

Guided Training, Intermediate Concepts

ÅBreakingthe problemin two sub-problemsand pre-training
eachmodule separately, then fine-tuning, nailsit

ÅNeedprior knowledgeto decomposethe task

ÅGuidedpre-training allowsto find muchbetter solutions, escape
effective local minima

20

HINTS

inputs outputs

(Gulcehreϧ .ŜƴƎƛƻ L/[wΩнлмоύ

Debugging

Å Instrument the code to make experiments reproducible

ÅUse tools to verify gradients (finite differences)

ÅTrain on a small dataset: verify can reach 0 training error

ÅTrack error curves during training (training error, validation
error); training error should roughly go down

ÅTrack distribution statistics of weights and gradients during
training

21

Validate and Analyze

ÅVary capacity and observe error curves to identify if the
system is rather overfitting or rather underfitting

ÅCompare with simpler reference models (logistic regression,
SVMs, random forests)

ÅTrack several relevant metrics

ÅLook at the training and validation examples which give the
worse error (input, output and target)

ÅMeasure the input of changing the number of training
examples

ÅMake sure you have enough test examples to be able to
conclude with statistical significance

22

