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Hyper - parameters

ÅParameters: optimized by gradient-based optimization on the 
training set 

ÅHyper-parameters: design decisions and settings of the 
optimization procedure

ÅOptimized based on performance on a validation set disjoint 
from training set.

ÅA disjoint test set is used to obtain final unbiased estimation of 
generalization performance.

ÅTraining, validation and test sets are subsets of randomized 
(shuffled)data,  to mimic iid assumption 
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Hyper - parameters of MLPs

ÅGlobal learning rate

ÅNumber of training epochs (passes over training set)

ÅNumber of neurons per layer

ÅDepth (number of layers)

ÅChoice of activation function(s) 

ÅRegulariationcoefficients (L1, L2, etc.)

ÅNoise injection & dropout

ÅLoss function and output non-linearity 

ÅMinibatchsize (with parallel computation within minibatch)

ÅWeight normalization method (e.g. batch normalization)

Å Input and targets normalization 

ÅData deformations 

ÅEtc.
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Nested optimisation of parameters and  
hyper - parameters

ÅFor each considered configuration of hyper-parameters 

ÅTrain parameters with this configuration (optimize train loss)

ÅMeasure resulting model’s validation error

ÅKeep this configuration if it’s the best seen up to now

ÅOptionally: Retrain with training+validationset

ÅMeasure resulting model’s test error
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Choosing the best = optimizing

ÅPicking the best hyper-parameter configuration in the given set is 
a form of optimization (or hyper-optimization)

ÅChoosing hyper-parameters based on training set would lead to 
high-capacity choices with overfitting (hence need a validation set)

ÅOptimizing a particular average taken over a dataset yields a 
biased (optimistic) value of that average (hence need a test set to 
obtain an unbiased estimator of generalization ability)

ÅČ We need 3 datasets: training, validation, test
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Cross- Validation

Å If your training set is very small (e.g. 1000 examples), the 
training/validation/test split gives too few validation or test 
examples to obtain statistically significant comparisons

ÅBut each training run is very fast!

ÅWe can repeat the training+testrun many times with different 
subsets of the data, allowing to use more (or all) of the 
examples as part of the test set (at least once).

ÅOnce such technique is k-fold cross-validation
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T: part of Training set
V: part of Validation set

Run 1: T T T T V
Run 2: T T T V T
Run 3: T T V T T
Run 4: T V T T T
Run 5: V T T T T

5 subsets
5-fold XV



Sequential Validation

Å If the data come from a time-series, and we want to use the 
predictor from past data to act in the future, we need a 
different estimator of generalization performance called 
sequential validation 

ÅWe simulate what would have happened if we had had data 
only up to time t, acting on that trained model over a block of 
following examples (acting as test), then repeat with increased t 
and average the test performances over all these blocks.

7

T V t
T T V t
T T T V t
T T T T V t

T: part of Training set
V: part of Validation set
t: part of test set
Use all the past Vsto select models
Use all the test blocks to evaluate overall performance



Hyper - Optimization

ÅManual search

ÅDon’t use test error! 

ÅSlow and sequential, but some trained humans do this better 
than any machine, for now.

ÅNot systematic, harder to reproduce

ÅGridsearch: inefficient with more than 2 hyper-parameters

ÅRandomsearch(Bergstra& Bengio, 2012, JMLR)

ÅSimple, robust& parallelezable

ÅBayesianoptimisation (sequential, automated), especiallygood 
for non-experts, but still needto set intervals
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Grid Search for Hyper - Parameters
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Å Discretizehyper-parametervalues

Å Formcross-productof values acrossall 
hyper-parameters: the grid

Å Launcha trial training + validation 
error measurementfor eachelement
of the grid

Å Can be parallelizedon a cluster, but 
mayneedto redo failedexperiments, 
until all grid is filled

Å Exponentialin # of hyper-parameters!



Random Sampling of Hyperparameters (Bergstra& 

Bengio 2012)

ÅRandom search: simple & efficient

ÅIndependently sample each HP, e.g. 

l.rate~exp(U[log(.1),log(.0001)])

ÅEach training trial is iid

ÅIf a HP is irrelevant grid search is wasteful

ÅMore convenient: ok to early-stop, continue 
further, etc.
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L1 regularisation to remove 
weights and inputs
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Add a term that pushes weights or groups of weights to 0

prediction error +

pushes individual weights to 0, whereas

prediction error +

is trying to make all the weights in the group                go to 0  



Weight Initialisation

(from

Hugo Larochelle)
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Attempts to be 
invariant to the 
size of the 
layers



Early Stopping : 
free lunch (T jobs for the price of 1)

(from

Hugo 
Larochelle)
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Regularizing by injecting noise: 

dropout
(from

Hugo 
Larochelle)

No noise 
at test 
time.
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Dropout Regularizer: Super - Efficient Bagging
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*

……



Diagnostic: overfitting vs underfitting ?

(from

Hugo 
Larochelle)
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or collect more data
or semi-supervised



How to know if you are overfitting or 
underfitting ?

Overfitting: if you increase capacity (number of parameters, 
training time, better optimizer, smaller regularization coefficient, 
etc.), test or validation error increase
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Curriculum Learning

Guided learning helps training humans 

and animals 
Shaping

Start from simpler examples / easier tasks   
(Piaget 1952, Skinner 1958)

Education

(Bengio et al ICML 2009)



Curriculum learning as a 
Continuation Method

Track local 

minima

Final solution

Easy to find 

minimum

(Bengio et al ICML 2009)



Guided Training, Intermediate Concepts

ÅBreakingthe problemin two sub-problemsand pre-training 
eachmodule separately, then fine-tuning, nailsit

ÅNeedprior knowledgeto decomposethe task

ÅGuidedpre-training allowsto find muchbetter solutions, escape 
effective local minima
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HINTS

inputs outputs

(Gulcehreϧ .ŜƴƎƛƻ L/[wΩнлмоύ 



Debugging

Å Instrument the code to make experiments reproducible

ÅUse tools to verify gradients (finite differences)

ÅTrain on a small dataset: verify can reach 0 training error

ÅTrack error curves during training (training error, validation 
error); training error should roughly go down

ÅTrack distribution statistics of weights and gradients during 
training

21



Validate and Analyze 

ÅVary capacity and observe error curves to identify if the 
system is rather overfitting or rather underfitting

ÅCompare with simpler reference models (logistic regression, 
SVMs, random forests) 

ÅTrack several relevant metrics

ÅLook at the training and validation examples which give the 
worse error (input, output and target)

ÅMeasure the input of changing the number of training 
examples

ÅMake sure you have enough test examples to be able to 
conclude with statistical significance
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