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Representation Learning
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Missing Pieces

ÅControllable representations

ÅLearning from weak supervision

ÅRobust learning methods
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Talk Goals

ÅGive overview of recent advances in unsupervised learning

ÅHighlight open research challenges



Density Estimation



Learning Probabilistic Models
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Learning Probabilistic Models
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Assumptions on P:

Å tractable sampling
Å tractable parameter gradient with respect to sample
Å tractable likelihood function



Principles of Density Estimation

ÅKernel MMD / DISCO

ÅWasserstein GANs

Integral Probability Metrics
[Müller, 1997]

[Sriperumbuduret al., 2010]
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Proper scoring rules
[Gneitingand Raftery, 2007]
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ÅVariationalAutoencoders

ÅDISCO networks

f-divergences
[Ali and Silvey, 1966],
[Nguyen et al., 2010]
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ÅGenerative adversarial 
networks

ÅὪ-GAN, ὦ-GAN



Classic parametric models

ÅDensity function available
ÅLimited expressive power
ÅMature field in statistics and learning theory
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Implicit Model / Neural Sampler / Likelihood-free Model

ÅHighly expressive model class
ÅDensity function not defined or intractable
ÅLack of theory and learning algorithms
ÅBasis for generative adversarial networks (GANs)
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Implicit Models



Implicit models as building blocks

ÅFor inference (as in AVB), or

ÅAs model component, or

ÅAs regularizer



Implicit Models: Problem 1
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Implicit Models: Problem 2
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Generative Adversarial Networks



GAN = Implicit Models +
Estimation procedure



GAN Training Objective [Goodfellow et al., 2014]

ÅGenerator tries to fool discriminator (i.e. generate realistic samples)

ÅDiscriminator tries to distinguish fake from real samples

ÅSaddle-point problem

Generator ὖ

Adversary Ὀ

Binary classifier
Training set
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Natural Images (Radford et al., 2015, arXiv:1511.06434)


