

Probabilistic Deep Learning:

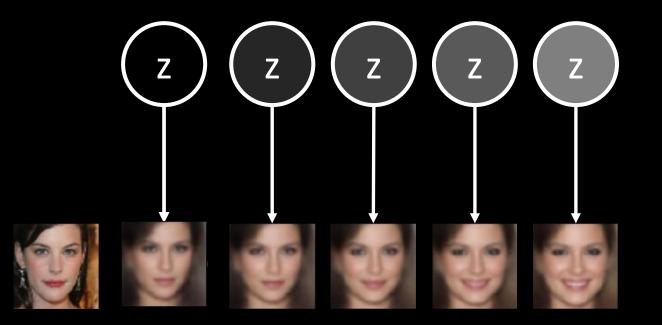
Unsupervised Learning and Representation Learning

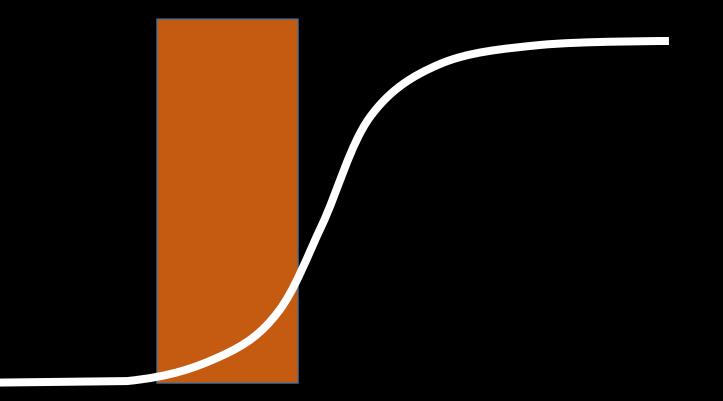
Sebastian Nowozin Microsoft Research

Unsupervised learning

Representation learning

Representation Learning



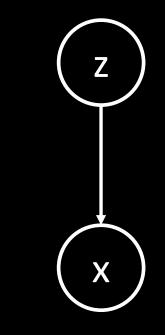


Missing Pieces

Controllable representations

Learning from weak supervision

• Robust learning methods

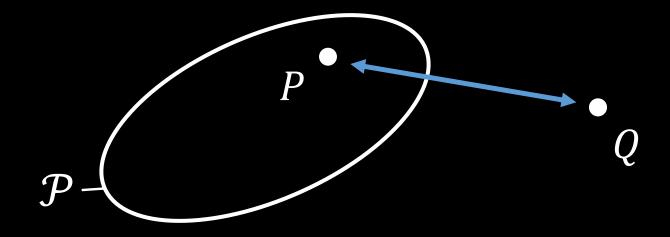


Talk Goals

- Give overview of recent advances in unsupervised learning
- Highlight open research challenges

Density Estimation

Learning Probabilistic Models



Learning Probabilistic Models



Assumptions on *P*:

- tractable sampling
- tractable parameter gradient with respect to sample
- tractable likelihood function

Principles of Density Estimation

Integral Probability Metrics
[Müller, 1997]
[Sriperumbudur et al., 2010]

$$\gamma_{\mathcal{F}}(P,Q) = \sup_{f \in \mathcal{F}} \left| \int f dP - \int f dQ \right|$$

- Kernel MMD / DISCO
- Wasserstein GANs

Proper scoring rules [Gneiting and Raftery, 2007]

$$S(P,Q) = \int S(P,x) dQ(x)$$

• Variational Autoencoders

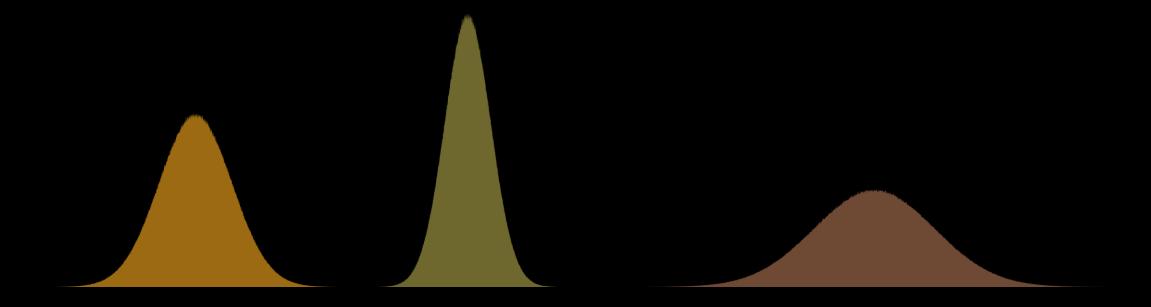
• DISCO networks

f-divergences [Ali and Silvey, 1966], [Nguyen et al., 2010]

$$D_f(P \parallel Q) = \int q(x) f\left(\frac{p(x)}{q(x)}\right) dx$$

- Generative adversarial networks
- *f*-GAN, *b*-GAN

Classic parametric models



- Density function available
- Limited expressive power
- Mature field in statistics and learning theory

Implicit Model / Neural Sampler / Likelihood-free Model

- Highly expressive model class
- Density function not defined or intractable
- Lack of theory and learning algorithms
- Basis for generative adversarial networks (GANs)

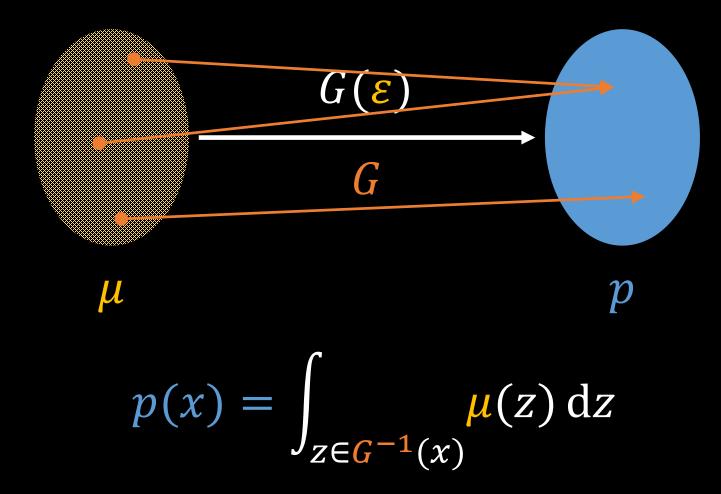
Implicit Models

- 1. Diggle and Gratton (1984). Monte Carlo methods of inference for implicit statistical models. JRSS B
- 2. Goodfellow et al. (2014). Generative Adversarial Nets. NIPS
- 3. Mohamed and Lakshminarayanan (2016). Learning in Implicit Generative Models. *arXiv:1610.03483*

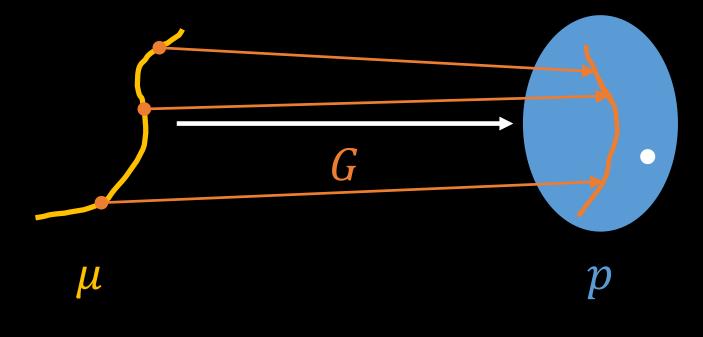
Implicit models as building blocks

- For inference (as in AVB), or
- As model component, or
- As regularizer

Implicit Models: Problem 1



Implicit Models: Problem 2

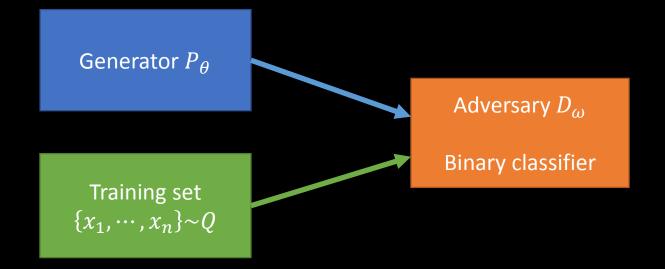


p(x) not defined a.e.

Generative Adversarial Networks

GAN = Implicit Models + Estimation procedure

GAN Training Objective [Goodfellow et al., 2014]



- Generator tries to fool discriminator (i.e. generate realistic samples)
- Discriminator tries to distinguish fake from real samples
- Saddle-point problem

$$\min_{\theta} \max_{\omega} \mathbb{E}_{x \sim P_{\theta}} [\log D_{\omega}(x)] + \mathbb{E}_{x \sim Q} [\log(1 - D_{\omega}(x))]$$

Natural Images (Radford et al., 2015, arXiv:1511.06434)

Linear interpolation in latent space [Radford et al., 2015]

Estimating f-divergences from samples

[Nguyen, Wainwright, Jordan, 2010]

Divergence between two distributions

$$D_f(P \parallel Q) = \int_{\mathcal{X}} q(x) f\left(\frac{p(x)}{q(x)}\right) dx$$

f: generator function (convex & f(1)=0)

• Every convex function f has a Fenchel conjugate f^* so that $f(\mathbf{u}) = \sup_{\substack{t \in \text{dom}_{f^*}}} \{t\mathbf{u} - f^*(t)\}$

"any convex *f* can be represented as point-wise max of *linear* functions"

Estimating f-divergences from samples (cont)

[Nguyen, Wainwright, Jordan, 2010]

$$D_{f}(P \parallel Q) = \int_{\mathcal{X}} q(x) f\left(\frac{p(x)}{q(x)}\right) dx$$

$$= \int_{\mathcal{X}} q(x) \sup_{t \in \text{dom}_{f^{*}}} \left\{ t \frac{p(x)}{q(x)} - f^{*}(t) \right\} dx$$

$$\ge \sup_{T \in \mathcal{T}} \left(\int_{\mathcal{X}} p(x) T(x) dx - \int_{\mathcal{X}} q(x) f^{*}(T(x)) dx \right)$$

$$= \sup_{T \in \mathcal{T}} \left(\mathbb{E}_{x \sim P}[T(x)] - \mathbb{E}_{x \sim Q}[f^{*}(T(x))] \right)$$

Approximate using: samples from *P* samples from *Q*

f-GAN and GAN objectives

- GAN $\min_{\theta} \max_{\omega} \mathbb{E}_{x \sim P_{\theta}}[\log D_{\omega}(x)] + \mathbb{E}_{x \sim Q}[\log(1 - D_{\omega}(x))]$
- f-GAN

$$\min_{\theta} \max_{\omega} \left(\mathbb{E}_{x \sim P_{\theta}} [T_{\omega} (x)] - \mathbb{E}_{x \sim Q} [f^*(T_{\omega} (x))] \right)$$

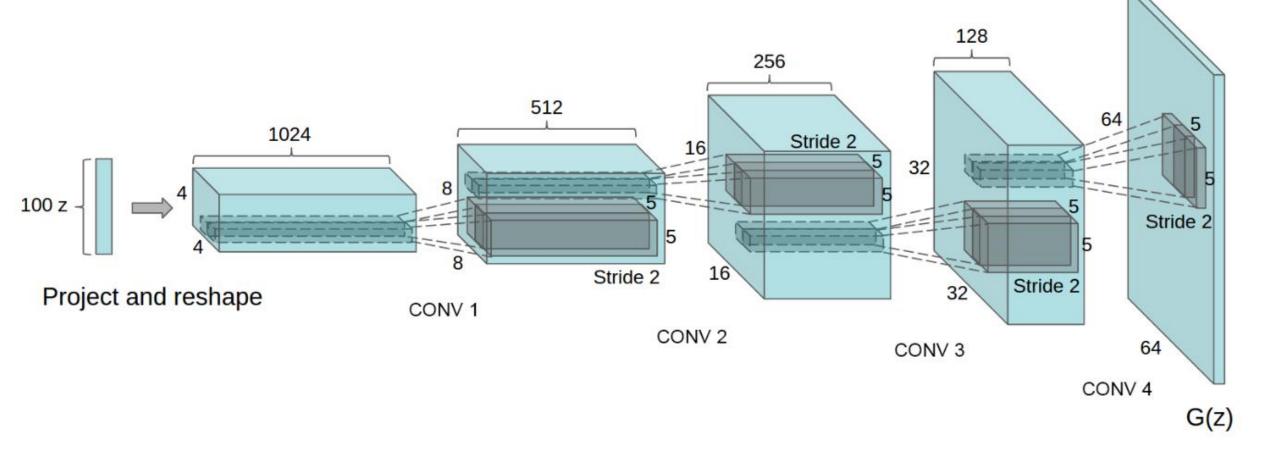
- GAN discriminator-variational function correspondence: $\log D_{\omega}(x) = T_{\omega}(x)$
- GAN minimizes the Jensen-Shannon divergence (which was also pointed out in Goodfellow et al., 2014)

f-divergences

Name	$D_f(P \ Q)$	Generator $f(u)$
Total variation	$\tfrac{1}{2}\int \left p(x)-q(x)\right \mathrm{d}x$	$\frac{1}{2} u-1 $
Kullback-Leibler	$ \int p(x) \log \frac{p(x)}{q(x)} dx \int q(x) \log \frac{q(x)}{p(x)} dx $	$u \log u$
Reverse Kullback-Leibler	$\int q(x) \log \frac{\hat{q}(x)}{p(x)} dx$	$-\log u$
Pearson χ^2	$\int \frac{(q(x)-p(x))^2}{p(x)} dx$	$(u - 1)^2$
Neyman χ^2	$\int \frac{(p(x) - q(x))^2}{q(x)} \mathrm{d}x$	$\frac{(1-u)^2}{u}$
Squared Hellinger	$\int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^2 dx$	$\left(\sqrt{u}-1\right)^2$
Jeffrey	$\int (p(x) - q(x)) \log\left(\frac{p(x)}{q(x)}\right) dx$	$(u-1)\log u$
Jensen-Shannon	$\frac{1}{2} \int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} dx$	$-(u+1)\log \tfrac{1+u}{2} + u\log u$
Jensen-Shannon-weighted	$\int p(x)\pi \log \frac{p(x)}{\pi p(x) + (1 - \pi)q(x)} + (1 - \pi)q(x) \log \frac{q(x)}{\pi p(x) + (1 - \pi)q(x)} dx$	$\pi u \log u - (1 - \pi + \pi u) \log(1 - \pi + \pi u)$
GAN	$\int p(x)\pi \log \frac{p(x)}{\pi p(x) + (1-\pi)q(x)} + (1-\pi)q(x) \log \frac{q(x)}{\pi p(x) + (1-\pi)q(x)} dx$ $\int p(x) \log \frac{2p(x)}{p(x) + q(x)} + q(x) \log \frac{2q(x)}{p(x) + q(x)} dx - \log(4)$	$u\log u - (u+1)\log(u+1)$
$\alpha \text{-divergence} \ (\alpha \notin \{0,1\})$	$\frac{1}{\alpha(\alpha-1)} \int \left(p(x) \left[\left(\frac{q(x)}{p(x)} \right)^{\alpha} - 1 \right] - \alpha(q(x) - p(x)) \right) \mathrm{d}x$	$\frac{1}{\alpha(\alpha-1)}\left(u^{\alpha}-1-\alpha(u-1)\right)$

LSUN Natural Images

- [Yu et al., 2015] one of the largest databases of natural images
- 168k images of classrooms
- [Radford et al., 2015] architecture
 - Generator: deconvolutional network, ~3M parameters
 - Variational function: convnet, ~3M parameters
- Batch normalization, gradient clipping, Adam
- ~3 hours training time (Titan X), ~135 images/s



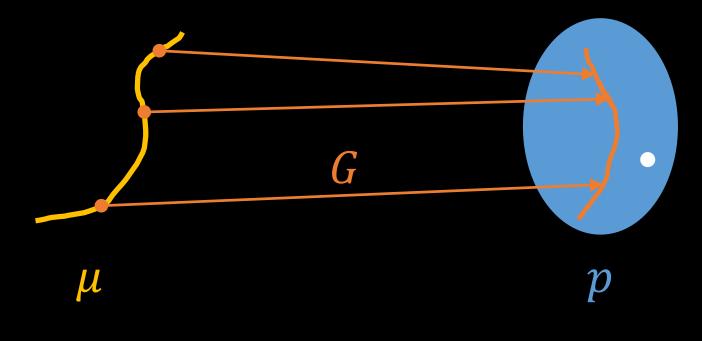


GAN (Jensen-Shannon)

Hellinger

Kullback-Leibler

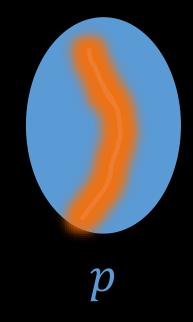
Implicit Models



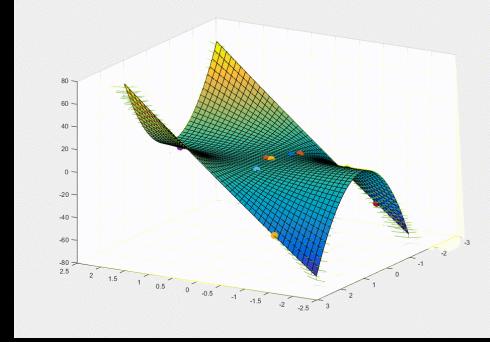
p(x) not defined a.e.

Implicit Models

- Use generalized f-divergence $D_{f,K}(P,Q) = D_f(K * P, K * Q)$
- Implementation: add noise
 [Sønderby et al., 2016]
 [Arjovsky and Bottou, 2016]
- Implementation: analytic [Roth et al., 2017]
- Choice of kernel introduces local geometry



Stability of GAN Training



- [Mescheder et al., "Numerics of GANs", arXiv:1705.10461, NIPS 2017]
- [Roth et al., "Stabilizing Training of Generative Adversarial Networks through Regularization", arXiv:1705.09367, NIPS 2017]

Principles of Density Estimation

Integral Probability Metrics
[Müller, 1997]
[Sriperumbudur et al., 2010]

$$\gamma_{\mathcal{F}}(P,Q) = \sup_{f \in \mathcal{F}} \left| \int f dP - \int f dQ \right|$$

- Kernel MMD / DISCO
- Wasserstein GANs

Proper scoring rules [Gneiting and Raftery, 2007]

$$S(P,Q) = \int S(P,x) dQ(x)$$

• Variational Autoencoders

• DISCO networks

f-divergences [Ali and Silvey, 1966], [Nguyen et al., 2010]

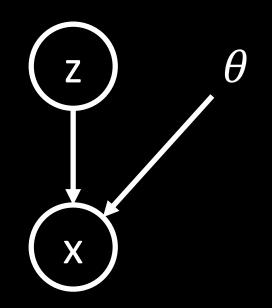
$$D_f(P \parallel Q) = \int q(x) f\left(\frac{p(x)}{q(x)}\right) dx$$

- Generative adversarial networks
- *f*-GAN, *b*-GAN

Variational Autoencoders (VAE)

[Kingma and Welling, 2014], [Rezende et al., 2014]

VAE: Model



$$p(x|\theta) = \int p(x|z,\theta)p(z)dz$$

- p(z) is a multivariate standard Normal
- $p(x|z,\theta)$ is a neural network outputting a simple distribution (e.g. diagonal Normal)

VAE: Maximum Likelihood Training

• Maximize the data log-likelihood, per-instance variational approximation

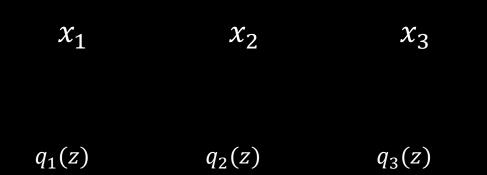
$$\log p(x|\theta) = \log \int p(x|z,\theta)p(z)dz$$

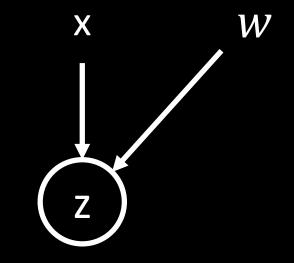
= $\log \int p(x|z,\theta)\frac{q(z)}{q(z)}p(z)dz$
= $\log \int p(x|z,\theta)\frac{p(z)}{q(z)}q(z)dz$
= $\log \mathbb{E}_{z \sim q(z)}\left[p(x|z,\theta)\frac{p(z)}{q(z)}\right]$
 $\geq \mathbb{E}_{z \sim q(z)}\left[\log p(x|z,\theta)\frac{p(z)}{q(z)}\right]$
= $\mathbb{E}_{z \sim q(z)}[\log p(x|z,\theta)] - D_{\mathrm{KL}}(q(z) \parallel p(z))$

Inference networks

- Amortized inference [Stuhlmüller et al., NIPS 2013]
- Inference networks, recognition networks [Kingma and Welling, 2014]
- "Informed sampler" [Jampani et al., 2014]
- "Memory-based approach" [Kulkarni et al., 2015]

Inference networks





VAE: Maximum Likelihood Training

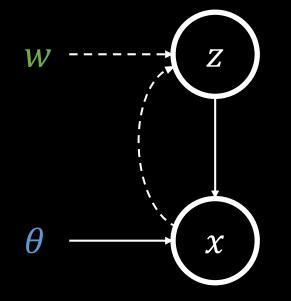
• Maximize the data log-likelihood, inference network variational approximation

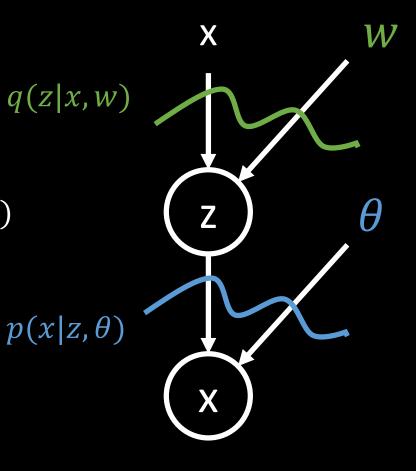
$$\log p(x|\theta) = \log \int p(x|z,\theta) p(z) dz$$

= $\log \int p(x|z,\theta) \frac{q(z|x,w)}{q(z|x,w)} p(z) dz$
= $\log \int p(x|z,\theta) \frac{p(z)}{q(z|x,w)} q(z|x,w) dz$
= $\log \mathbb{E}_{z \sim q(z|x,w)} \left[p(x|z,\theta) \frac{p(z)}{q(z|x,w)} \right]$
 $\geq \mathbb{E}_{z \sim q(z|x,w)} \left[\log p(x|z,\theta) \frac{p(z)}{q(z|x,w)} \right]$
= $\mathbb{E}_{z \sim q(z|x,w)} [\log p(x|z,\theta)] - D_{\mathrm{KL}}(q(z|x,w) \parallel p(z))$

Autoencoder viewpoint

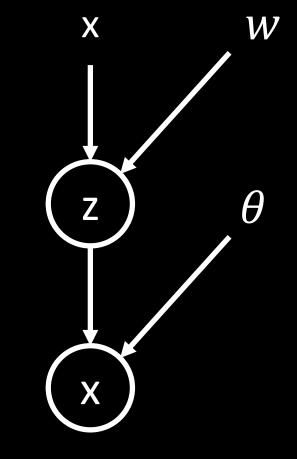
 $\max_{w,\theta} \mathbb{E}_{z \sim q(z|x,w)}[\log p(x|z,\theta)] - D_{\mathrm{KL}}(q(z|x,w) \parallel p(z))$





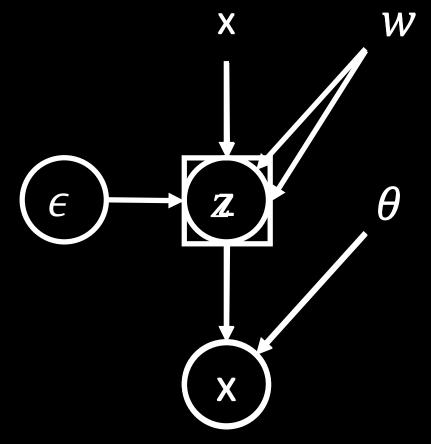
Reparametrization Trick

• [Rezende et al., 2014] [Kingma and Welling, 2014]



Reparametrization Trick

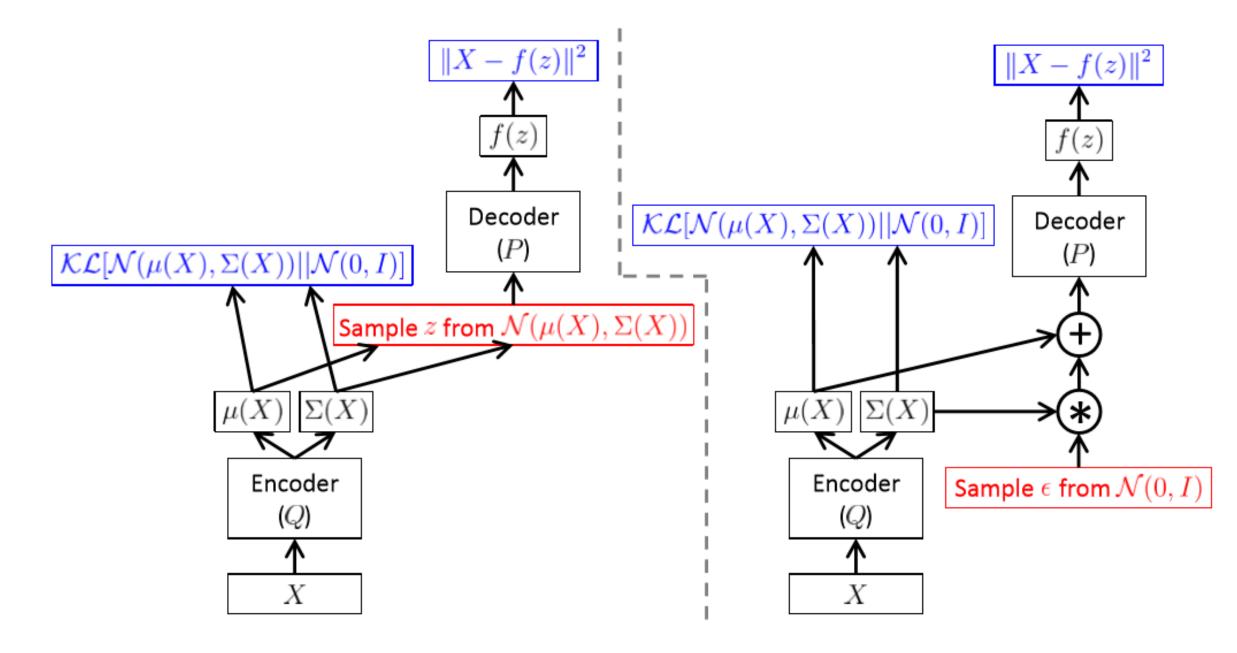
- [Rezende et al., 2014] [Kingma and Welling, 2014]
- Stochastic computation graphs [Schulman et al., 2015]



Variational Autoencoders

- 1. Dayan et al. (1995). The Helmholtz machine. Neural Computation
- 2. Kingma and Welling (2014). Auto-encoding Variational Bayes. NIPS
- 3. Rezende et al. (2014). Stochastic backpropagation and approximate inference in deep generative models. *ICML*

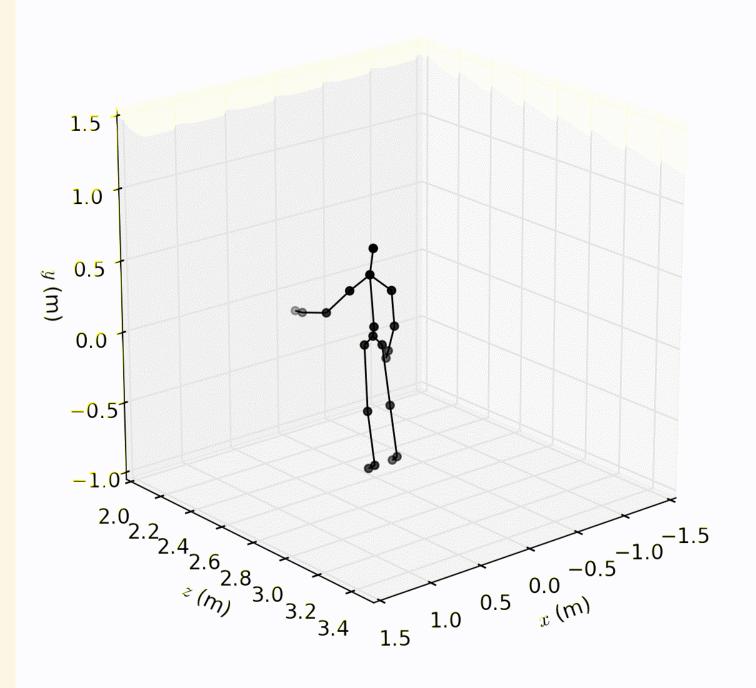
From highly-recommended tutorial: [Doersch, "Tutorial on Variational Autoencoders", arXiv:1606.05908]



```
def encode(self, x):
    h = F.crelu(self.qlin0(x))
   h = F.crelu(self.qlin1(h))
   h = F.crelu(self.qlin2(h))
   h = F.crelu(self.qlin3(h))
    self.qmu = self.qlin_mu(h)
    self.qln_var = self.qlin_ln_var(h)
def decode(self, z):
    h = F.crelu(self.plin0(z))
   h = F.crelu(self.plin1(h))
   h = F.crelu(self.plin2(h))
   h = F.crelu(self.plin3(h))
    self.pmu = self.plin_mu(h)
    self.pln_var = self.plin_ln_var(h)
def __call__(self, x):
    # Compute q(z|x)
    self.encode(x)
    self.kl = gaussian_kl_divergence(self.qmu, self.qln_var)
    self.logp = 0
    for j in xrange(self.num_zsamples):
        \# z \sim q(z|x)
        z = F.gaussian(self.qmu, self.qln_var)
        # Compute p(x|z)
        self.decode(z)
        # Compute objective
        self.logp += gaussian_logp(x, self.pmu, self.pln_var)
```

self.logp /= self.num_zsamples
self.obj = self.kl - self.logp

return self.obj

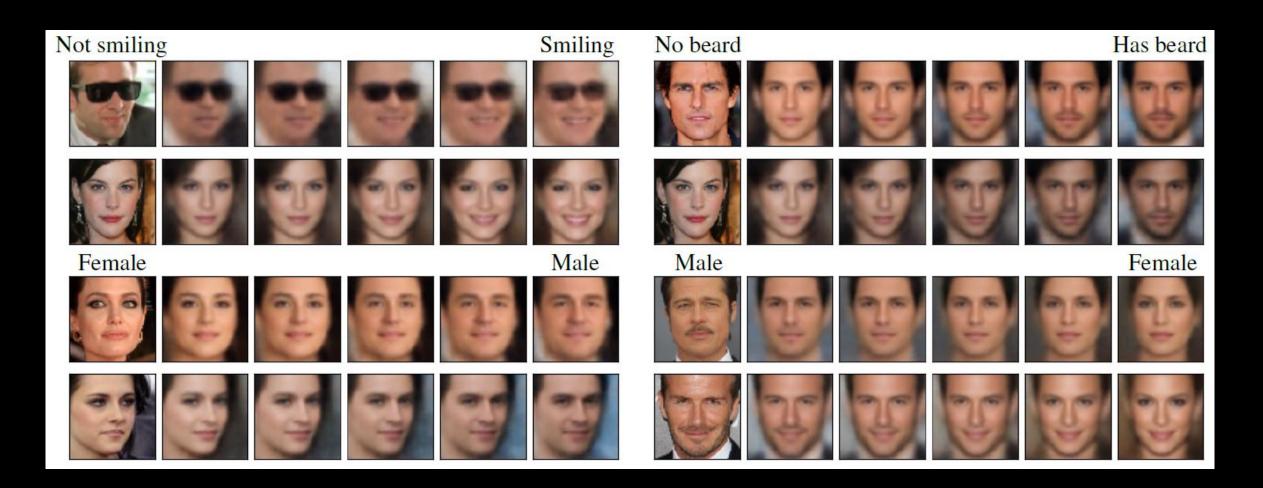


Problems in VAEs (as of 2017)

- Inadequate inference networks
 - Loose ELBO
 - Limits what the generative model can learn
- Parametric conditional likelihood assumptions
 - Limits the expressivity of the generative model
 - "Noise term has to explain too much"
- No control over latent representation that is learned

"Blurry images" in VAE models

from [Tulyakov, Fitzgibbon, Nowozin, ICCV 2017]



Improving Inference Networks

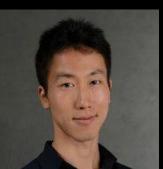
- State of the art in inference network design:
 - NICE [Dinh et al., 2015]
 - Hamiltonian variational inference (HVI) [Salimans et al., 2015]
 - Importance weighted autoencoder (IWAE) [Burda et al., 2016]
 - Normalizing flows [Rezende and Mohamed, 2016]
 - Auxiliary deep generative networks [Maaløe et al., 2016]
 - Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016]
 - Householder flows [Tomczak and Welling, 2017]
 - Adversarial variational Bayes (AVB) [Mescheder et al., 2017]
 - Deep and Hierarchical Implicit Models [Tran et al., 2017]
 - Variational Inference using Implicit Distributions [Huszár, 2017]
 - Adversarial Message Passing for Graphical Models [Karaletsos, 2016]

Problems in VAEs (as of 2017)

- Inadequate inference networks
 - Loose ELBO
 - Limits what the generative model can learn
- Parametric conditional likelihood assumptions
 - Limits the expressivity of the generative model
 - "Noise term has to explain too much"
- No control over latent representation that is learned

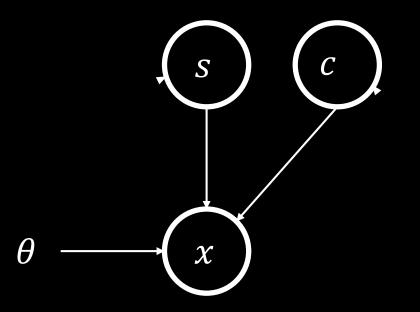
VAEs for Representation Learning

Diane Bouchacourt, Ryota Tomioka, Sebastian Nowozin arXiv:1705.08841, NIPS 2017



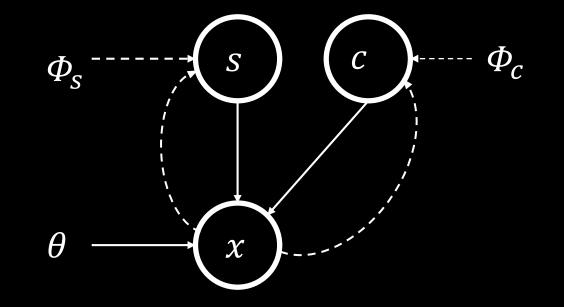
Two parts latent code

- Style *s*
- Content *c*



Two parts latent code

- Style *s*
- Content *c*

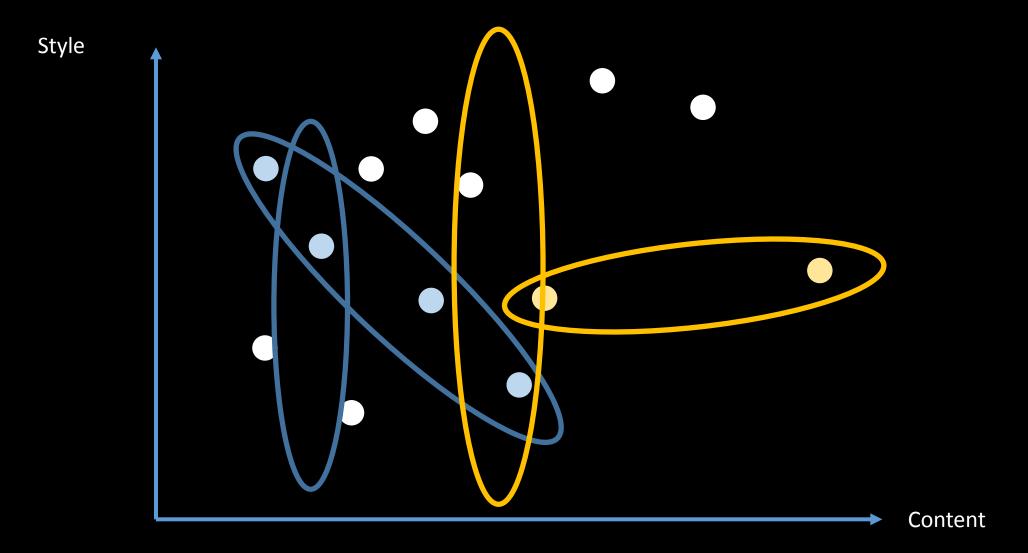


Related work

- Unsupervised [Chen et al., 2016; Wang and Gupta, 2016; Higgins et al., 2017] does not anchor specific meaning
- Semi-supervised [Siddarth et al., 2017; Louizos et al., 2016; Chen et al. 2017] requires supervision
- Group supervision [Bouchacourt et al., arXiv:1705.08841]

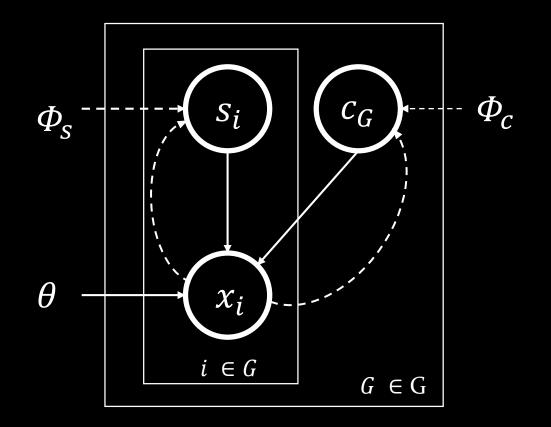
inexpensive weak supervision

Group-level Supervision

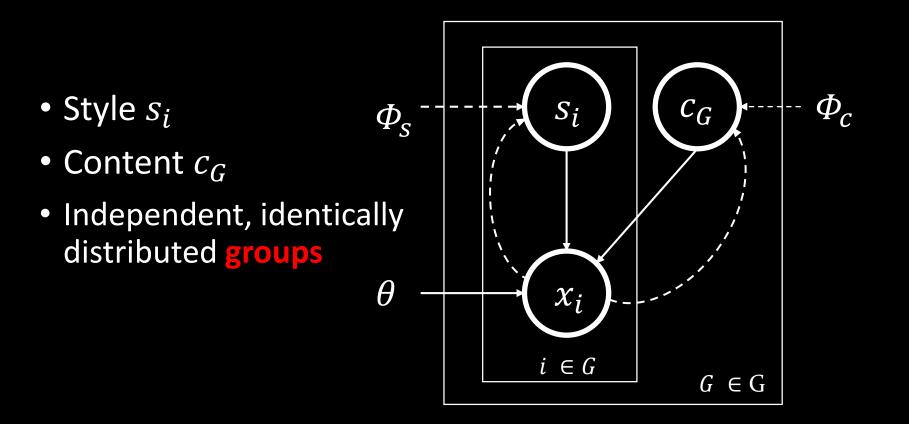


Two parts latent code

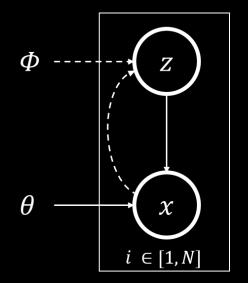
• Content c_G



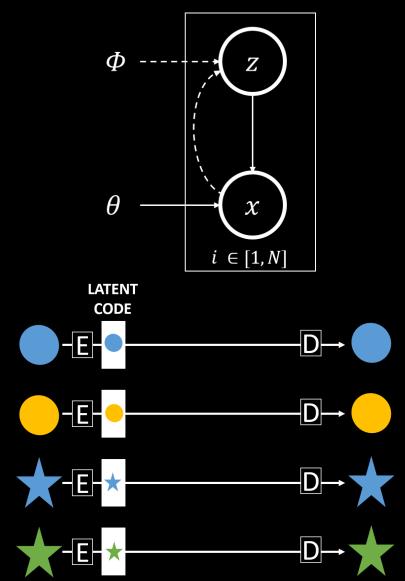
Multi-Level VAE



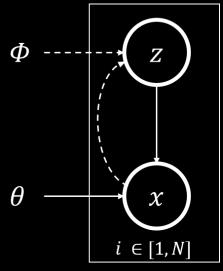
Independent, identically distributed samples Amortised inference

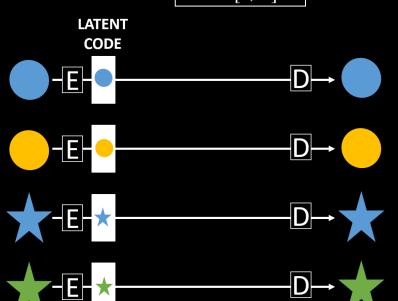


Independent, identically distributed samples Amortised inference



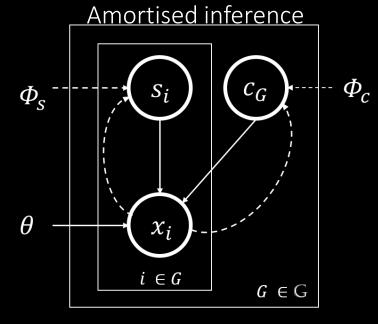
Independent, identically distributed samples Amortised inference



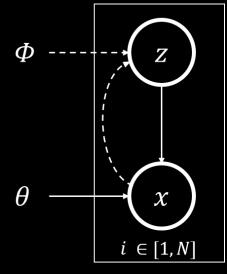


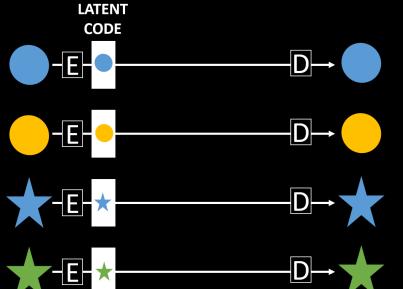
ML-VAE

Independent, identically distributed groups



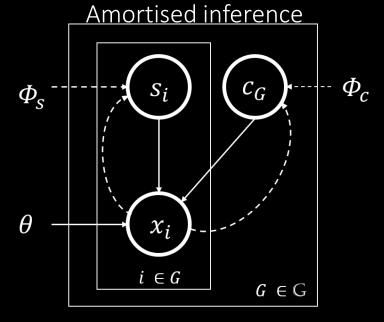
Independent, identically distributed samples Amortised inference

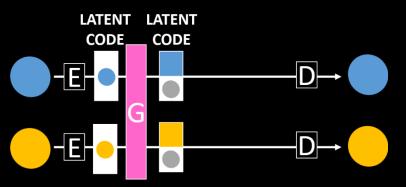




ML-VAE

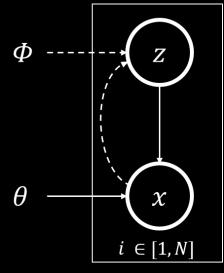
Independent, identically distributed groups

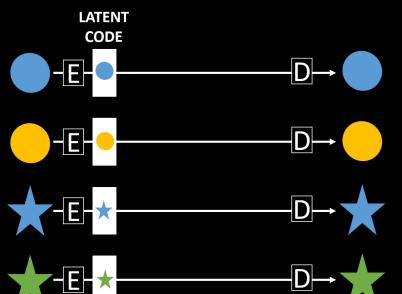




Grouping: build $Q(c_G | x_G; \Phi_c)$ from $Q(c_G | x_i; \Phi_c)$

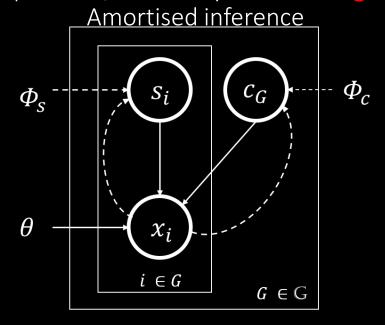
Independent, identically distributed samples Amortised inference

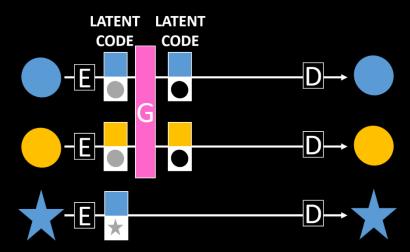




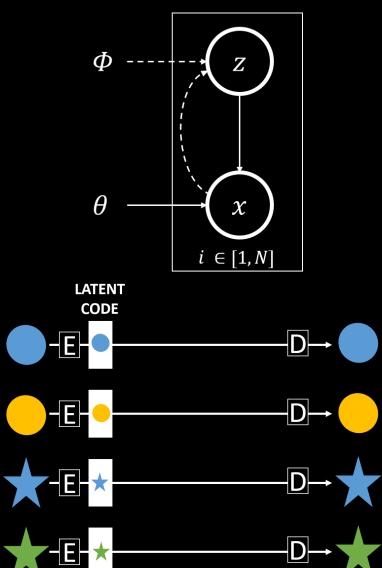
ML-VAE

Independent, identically distributed groups





Independent, identically distributed samples Amortised inference



ML-VAE

Independent, identically distributed groups Amortised inference Φ_{c} C_G S_i Φ_{s} heta x_i $i \in G$ $G \in \mathbb{G}$ LATENT LATENT CODE CODE D--E-D -E -E D D ⊣E⊦

Multi-Level VAE

• Maximise average Evidence Lower Bound

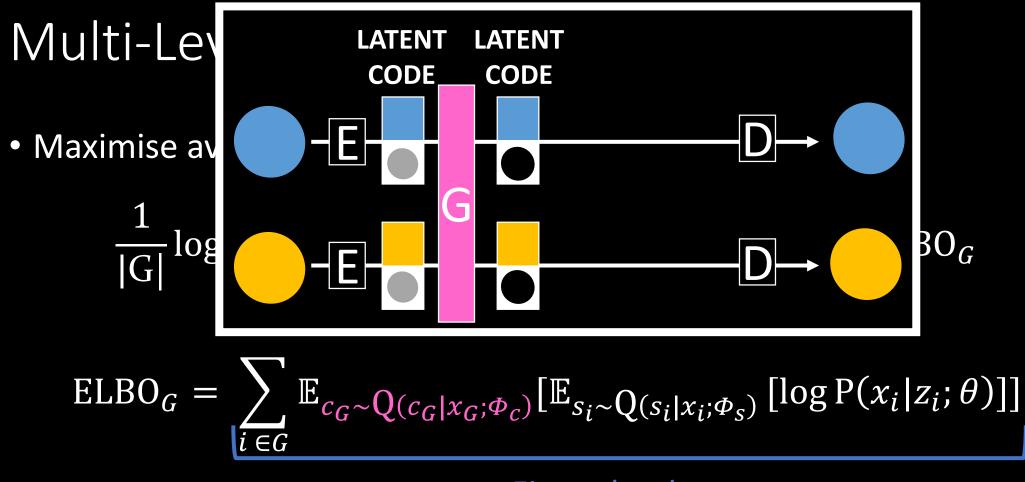
$$\frac{1}{|G|}\log P(x|\theta) = \frac{1}{|G|} \sum_{G \in G} \log P(x_G|\theta) \ge \frac{1}{|G|} \sum_{G \in G} ELBO_G$$

$$\text{ELBO}_{G} = \sum_{i \in G} \mathbb{E}_{c_{G} \sim Q(c_{G} | x_{G}; \phi_{c})} [\mathbb{E}_{s_{i} \sim Q(s_{i} | x_{i}; \phi_{s})} [\log P(x_{i} | z_{i}; \theta)]]$$

Fit to the data

 $-\sum_{i \in G} D_{\mathrm{KL}}(\mathbb{Q}(s_i | x_i; \Phi_s) || P(s_i)) - D_{\mathrm{KL}}(\mathbb{Q}(c_G | x_G; \Phi_c) || P(c_G))$

Regulariser



Fit to the data

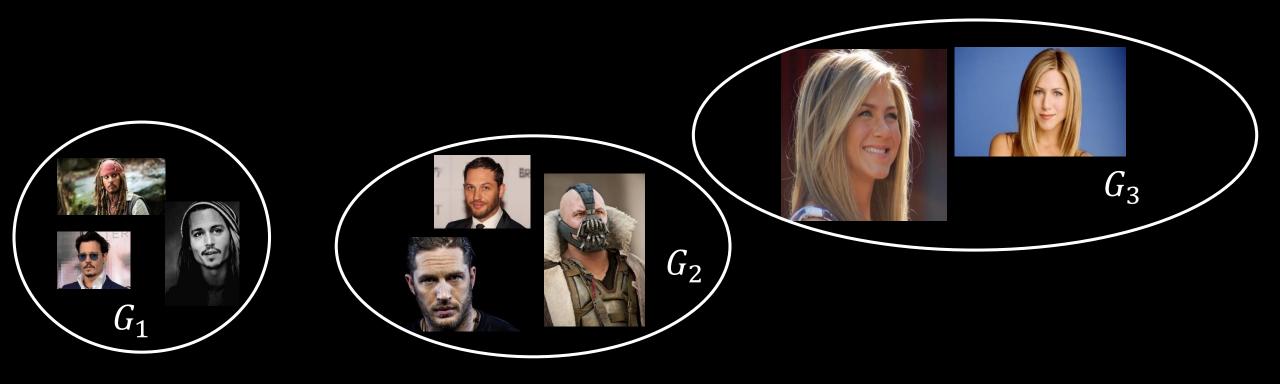
 $-\sum_{i\in G} D_{\mathrm{KL}}(Q(s_i|x_i;\Phi_s)||P(s_i)) - D_{\mathrm{KL}}(Q(c_G|x_G;\Phi_c)||P(c_G))$

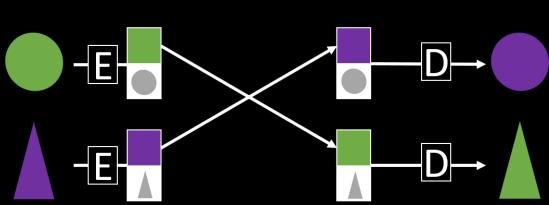
Regulariser

Experiments

MS-Celeb-1M dataset [MSR Asia]

- [Guo et al., 2016] celebrities face images
- Web queries per celebrity from popular search engines, with noise



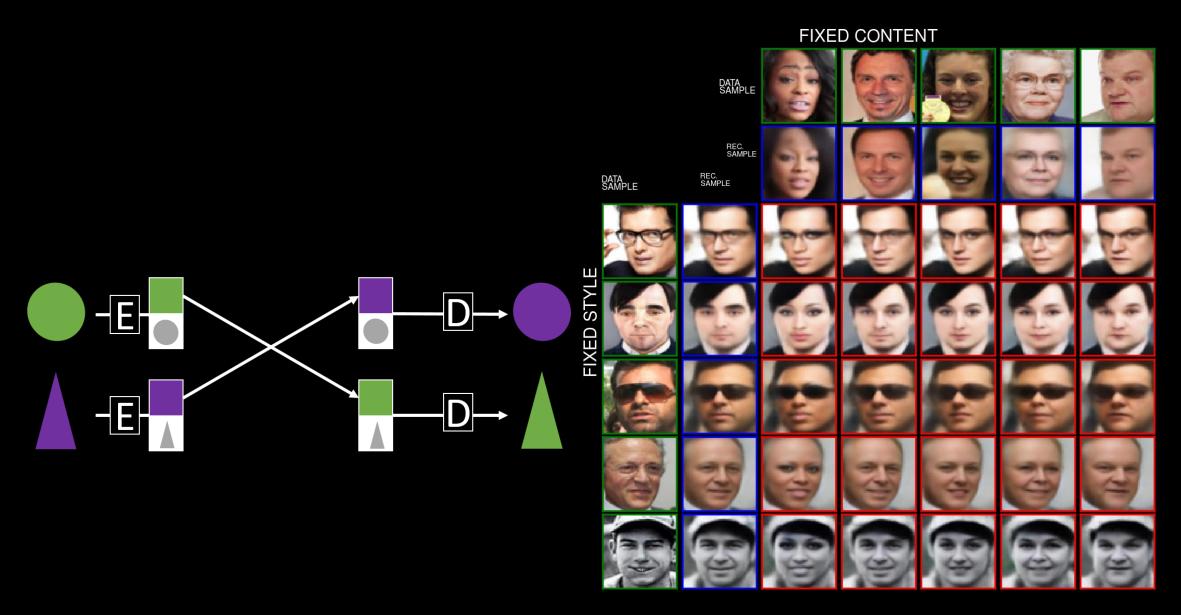


FIXED STYLE

DATA SAMPLE

> REC. SAMPLE

FIXED CONTENT



Control over the latent space

Same style, different ID

Same ID, different style

ML-VAE, summary

- Learns a useful disentangled representation
- Enables manipulation of the latent space
- Generalises to unseen groups
- Current work: text, controllable representations

Thanks!

Sebastian.Nowozin@microsoft.com

Additional Materials

GAN Archaeology

- Learning distributions by discriminative models
- Survey: [Mohamed and Lakshminarayanan, 2016]
- Partial history (in ML):

[Tu, CVPR 2007]: generative model estimation via classification
[Nguyen et al., 2010]: variational f-divergences
[Sugiyama et al., 2012]: density ratio estimation
[Gutmann and Hirayama, 2012], [Gutmann et al., 2014]

f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization

NIPS 2016

arXiv:1606.00709

Sebastian Nowozin, Botond Cseke, Ryota Tomioka

f-GAN Contributions

- Generalizes GAN objective to arbitrary *f*-divergences
- Simplifies the GAN algorithm
- Insights into choices of discriminator architectures

Estimating f-divergences from samples

[Nguyen, Wainwright, Jordan, 2010]

Divergence between two distributions

$$D_f(P \parallel Q) = \int_{\mathcal{X}} q(x) f\left(\frac{p(x)}{q(x)}\right) dx$$

f: generator function (convex & f(1)=0)

• Every convex function f has a Fenchel conjugate f^* so that $f(\mathbf{u}) = \sup_{\substack{t \in \text{dom}_{f^*}}} \{t\mathbf{u} - f^*(t)\}$

"any convex *f* can be represented as point-wise max of *linear* functions"

Estimating f-divergences from samples (cont)

[Nguyen, Wainwright, Jordan, 2010]

$$D_{f}(P \parallel Q) = \int_{\mathcal{X}} q(x) f\left(\frac{p(x)}{q(x)}\right) dx$$

$$= \int_{\mathcal{X}} q(x) \sup_{t \in \text{dom}_{f^{*}}} \left\{ t \frac{p(x)}{q(x)} - f^{*}(t) \right\} dx$$

$$\ge \sup_{T \in \mathcal{T}} \left(\int_{\mathcal{X}} q(x) T(x) dx - \int_{\mathcal{X}} p(x) f^{*}(T(x)) dx \right)$$

$$= \sup_{T \in \mathcal{T}} \left(\mathbb{E}_{x \sim Q}[T(x)] - \mathbb{E}_{x \sim P}[f^{*}(T(x))] \right)$$

Approximate using: samples from Q samples from P

f-GAN and GAN objectives

- GAN $\min_{\theta} \max_{\omega} \mathbb{E}_{x \sim Q}[\log D_{\omega}(x)] + \mathbb{E}_{x \sim P_{\theta}}[\log(1 - D_{\omega}(x))]$
- f-GAN

$$\min_{\theta} \max_{\omega} \left(\mathbb{E}_{x \sim Q} \left[T_{\omega} \left(x \right) \right] - \mathbb{E}_{x \sim P_{\theta}} \left[f^* \left(T_{\omega} \left(x \right) \right) \right] \right)$$

- GAN discriminator-variational function correspondence: $\log D_{\omega}(x) = T_{\omega}(x)$
- GAN minimizes the Jensen-Shannon divergence (which was also pointed out in Goodfellow et al., 2014)

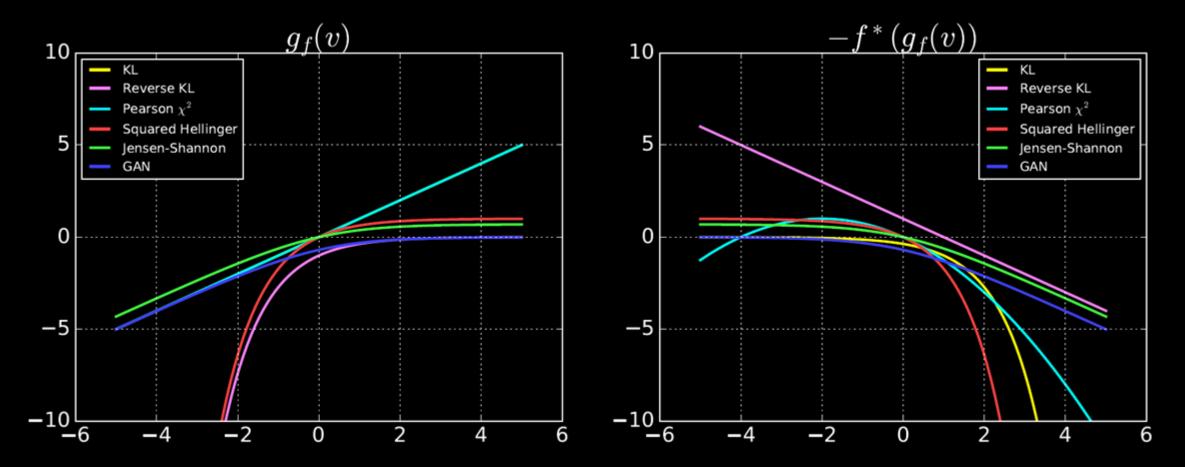
f-divergences

Name	$D_f(P \ Q)$	Generator $f(u)$
Total variation	$\tfrac{1}{2}\int \left p(x)-q(x)\right \mathrm{d}x$	$\frac{1}{2} u-1 $
Kullback-Leibler	$ \int p(x) \log \frac{p(x)}{q(x)} dx \int q(x) \log \frac{q(x)}{p(x)} dx $	$u \log u$
Reverse Kullback-Leibler	$\int q(x) \log \frac{\hat{q}(x)}{p(x)} dx$	$-\log u$
Pearson χ^2	$\int \frac{(q(x)-p(x))^2}{p(x)} dx$	$(u - 1)^2$
Neyman χ^2	$\int \frac{(p(x) - q(x))^2}{q(x)} \mathrm{d}x$	$\frac{(1-u)^2}{u}$
Squared Hellinger	$\int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^2 dx$	$\left(\sqrt{u}-1\right)^2$
Jeffrey	$\int (p(x) - q(x)) \log\left(\frac{p(x)}{q(x)}\right) dx$	$(u-1)\log u$
Jensen-Shannon	$\frac{1}{2} \int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} dx$	$-(u+1)\log \tfrac{1+u}{2} + u\log u$
Jensen-Shannon-weighted	$\int p(x)\pi \log \frac{p(x)}{\pi p(x) + (1 - \pi)q(x)} + (1 - \pi)q(x) \log \frac{q(x)}{\pi p(x) + (1 - \pi)q(x)} dx$	$\pi u \log u - (1 - \pi + \pi u) \log(1 - \pi + \pi u)$
GAN	$\int p(x)\pi \log \frac{p(x)}{\pi p(x) + (1-\pi)q(x)} + (1-\pi)q(x) \log \frac{q(x)}{\pi p(x) + (1-\pi)q(x)} dx$ $\int p(x) \log \frac{2p(x)}{p(x) + q(x)} + q(x) \log \frac{2q(x)}{p(x) + q(x)} dx - \log(4)$	$u\log u - (u+1)\log(u+1)$
$\alpha \text{-divergence} \ (\alpha \notin \{0,1\})$	$\frac{1}{\alpha(\alpha-1)} \int \left(p(x) \left[\left(\frac{q(x)}{p(x)} \right)^{\alpha} - 1 \right] - \alpha(q(x) - p(x)) \right) \mathrm{d}x$	$\frac{1}{\alpha(\alpha-1)}\left(u^{\alpha}-1-\alpha(u-1)\right)$

f-GAN

Name	Output activation g_f	dom_{f^*}	Conjugate $f^*(t)$	f'(1)
Total variation	$\frac{1}{2} \tanh(v)$	$-\frac{1}{2} \le t \le \frac{1}{2}$	t	0
Kullback-Leibler (KL)	v	\mathbb{R}^{-}	$\exp(t-1)$	1
Reverse KL	$-\exp(v)$	\mathbb{R}_{-}	$-1 - \log(-t)$	-1
Pearson χ^2	v	\mathbb{R}	$\frac{1}{4}t^2 + t$	0
Neyman χ^2	$1 - \exp(v)$	t < 1	$\dot{2} - 2\sqrt{1-t}$	0
Squared Hellinger	$1 - \exp(v)$	t < 1	$\frac{t}{1-t}$	0
Jeffrey	v	\mathbb{R}	$W(e^{1-t}) + \frac{1}{W(e^{1-t})} + t - 2$	0
Jensen-Shannon	$\log(2) - \log(1 + \exp(-v))$	$t < \log(2)$	$-\log(2 - \exp(t))$	0
Jensen-Shannon-weighted	$-\pi \log \pi - \log(1 + \exp(-v))$	$t < -\pi \log \pi$	$(1-\pi)\log \frac{1-\pi}{1-\pi e^{t/\pi}}$	0
GAN	$-\log(1 + \exp(-v))$	\mathbb{R}_{-}	$-\log(1-\exp(t))$	$-\log(2)$
α -div. ($\alpha < 1, \alpha \neq 0$)	$\frac{1}{1-\alpha} - \log(1 + \exp(-v))$	$t < \frac{1}{1-\alpha}$	$\frac{1}{\alpha}(t(\alpha-1)+1)^{\frac{\alpha}{\alpha-1}}-\frac{1}{\alpha}$	0
α -div. ($\alpha > 1$)	v	\mathbb{R}	$\frac{1}{\alpha}(t(\alpha-1)+1)^{\frac{\alpha}{\alpha-1}} - \frac{1}{\alpha}$	0

Comparison of the objectives $\min_{\theta} \max_{\omega} \left(\mathbb{E}_{x \sim P} \left[g_f(V_{\omega}(x)) \right] + \mathbb{E}_{x \sim Q_{\theta}} \left[-f^* \left(g_f(V_{\omega}(x)) \right) \right] \right)$



Implementing GANs

- "How to Train a GAN?", Soumith Chintala
- Saddle-point problem versus two optimization problems
- Easy to make errors:
 - Optimization using "different generator objective" is broken: [Poole et al., 2016], highly recommended
- (More on the topic of GAN training later)

Outline

- 1. f-Divergences (GAN)
- 2. Proper Scoring Rules (VAE)
- 3. Integral Probability Metrics (DISCO, MMD, WGAN)
- 4. Current research areas

Proper Scoring Rules [Gneiting and Raftery, 2007]

• "Loss function for distributions":

$$S(P,Q) = \int S(P,x) dQ(x)$$

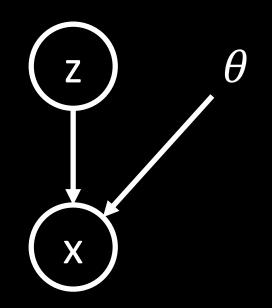
$$S(P,P) \leq S(P,Q), \quad \forall P,Q \in \mathcal{P}$$

- Discrete case: complete characterization (Savage representation)
- Continuous case, density function P
 - Log-likelihood [Good, 1952], $S(P, x) = \log P(x)$
 - Quadratic score [Bernado, 1979], $S(P, x) = 2 P(x) ||P||_2^2$
 - Pseudospherical score [Good, 1971], $S(P, x) = P(x)^{\alpha-1} / ||P||_{\alpha}^{\alpha-1}$

Variational Autoencoders (VAE)

[Kingma and Welling, 2014], [Rezende et al., 2015]

VAE: Model



$$p(x|\theta) = \int p(x|z,\theta)p(z)dz$$

- p(z) is a multivariate standard Normal
- $p(x|z,\theta)$ is a neural network outputting a simple distribution (e.g. diagonal Normal)

VAE: Maximum Likelihood Training

• Maximize the data log-likelihood, per-instance variational approximation

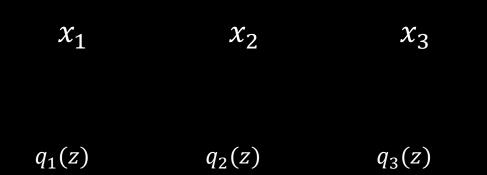
$$\log p(x|\theta) = \log \int p(x|z,\theta)p(z)dz$$

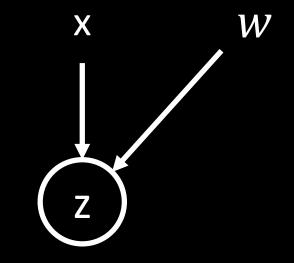
= $\log \int p(x|z,\theta)\frac{q(z)}{q(z)}p(z) dz$
= $\log \int p(x|z,\theta)\frac{p(z)}{q(z)}q(z) dz$
= $\log \mathbb{E}_{z \sim q(z)} \left[p(x|z,\theta)\frac{p(z)}{q(z)} \right]$
 $\geq \mathbb{E}_{z \sim q(z)} \left[\log p(x|z,\theta)\frac{p(z)}{q(z)} \right]$
= $\mathbb{E}_{z \sim q(z)} [\log p(x|z,\theta)] - D_{\mathrm{KL}}(q(z) \parallel p(z))$

Inference networks

- Amortized inference [Stuhlmüller et al., NIPS 2013]
- Inference networks, recognition networks [Kingma and Welling, 2014]
- "Informed sampler" [Jampani et al., 2014]
- "Memory-based approach" [Kulkarni et al., 2015]

Inference networks





VAE: Maximum Likelihood Training

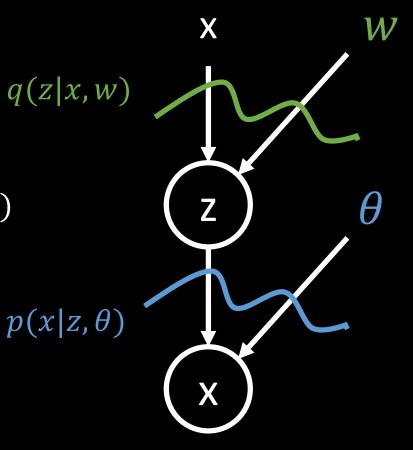
• Maximize the data log-likelihood, inference network variational approximation

$$\log p(x|\theta) = \log \int p(x|z,\theta) p(z) dz$$

= $\log \int p(x|z,\theta) \frac{q(z|x,w)}{q(z|x,w)} p(z) dz$
= $\log \int p(x|z,\theta) \frac{p(z)}{q(z|x,w)} q(z|x,w) dz$
= $\log \mathbb{E}_{z \sim q(z|x,w)} \left[p(x|z,\theta) \frac{p(z)}{q(z|x,w)} \right]$
 $\geq \mathbb{E}_{z \sim q(z|x,w)} \left[\log p(x|z,\theta) \frac{p(z)}{q(z|x,w)} \right]$
= $\mathbb{E}_{z \sim q(z|x,w)} [\log p(x|z,\theta)] - D_{\mathrm{KL}}(q(z|x,w) \parallel p(z))$

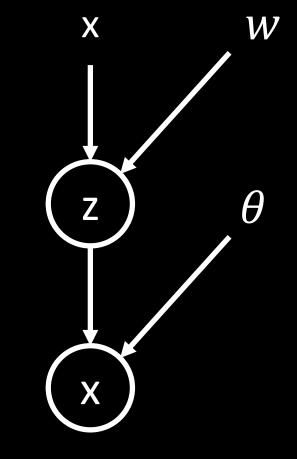
Autoencoder viewpoint

 $\max_{w,\theta} \mathbb{E}_{z \sim q(z|x,w)}[\log p(x|z,\theta)] - D_{\mathrm{KL}}(q(z|x,w) \parallel p(z))$



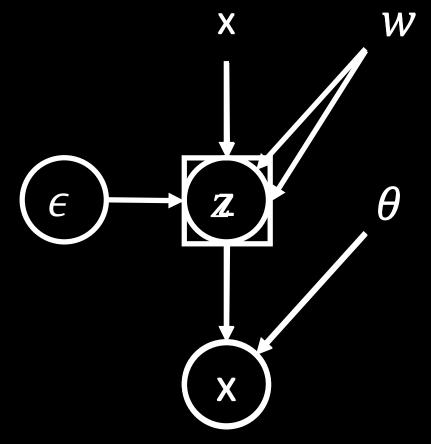
Reparametrization Trick

• [Rezende et al., 2014] [Kingma and Welling, 2014]

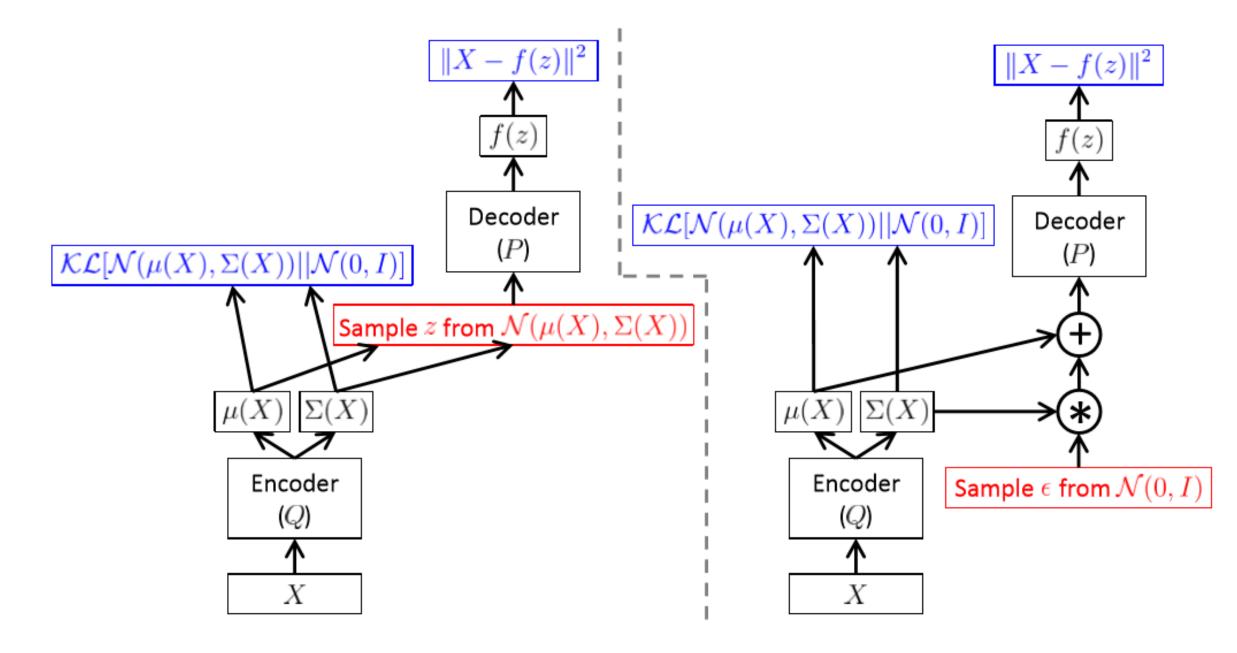


Reparametrization Trick

- [Rezende et al., 2014] [Kingma and Welling, 2014]
- Stochastic computation graphs [Schulman et al., 2015]



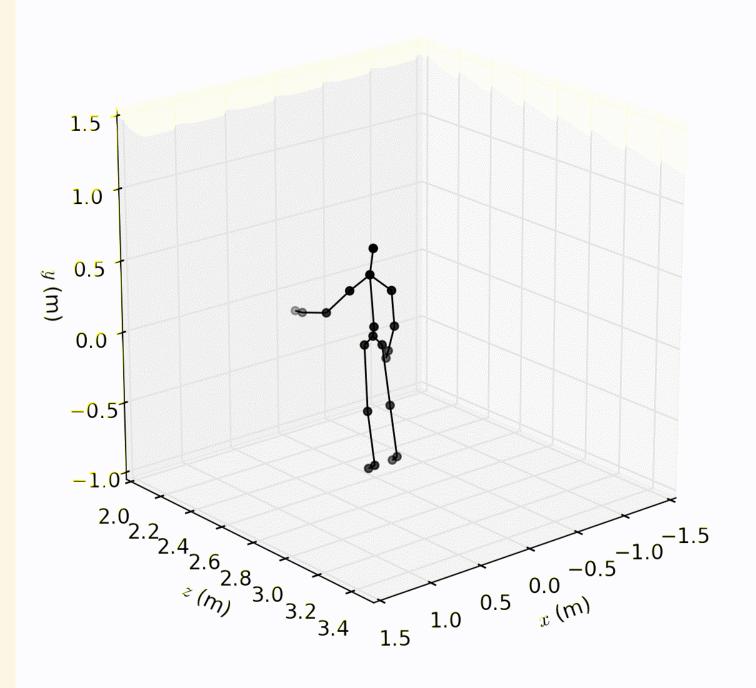
From highly-recommended tutorial: [Doersch, "Tutorial on Variational Autoencoders", arXiv:1606.05908]



```
def encode(self, x):
    h = F.crelu(self.qlin0(x))
   h = F.crelu(self.qlin1(h))
   h = F.crelu(self.qlin2(h))
   h = F.crelu(self.qlin3(h))
    self.qmu = self.qlin_mu(h)
    self.qln_var = self.qlin_ln_var(h)
def decode(self, z):
    h = F.crelu(self.plin0(z))
   h = F.crelu(self.plin1(h))
   h = F.crelu(self.plin2(h))
   h = F.crelu(self.plin3(h))
    self.pmu = self.plin_mu(h)
    self.pln_var = self.plin_ln_var(h)
def __call__(self, x):
    # Compute q(z|x)
    self.encode(x)
    self.kl = gaussian_kl_divergence(self.qmu, self.qln_var)
    self.logp = 0
    for j in xrange(self.num_zsamples):
        \# z \sim q(z|x)
        z = F.gaussian(self.qmu, self.qln_var)
        # Compute p(x|z)
        self.decode(z)
        # Compute objective
        self.logp += gaussian_logp(x, self.pmu, self.pln_var)
```

self.logp /= self.num_zsamples
self.obj = self.kl - self.logp

return self.obj

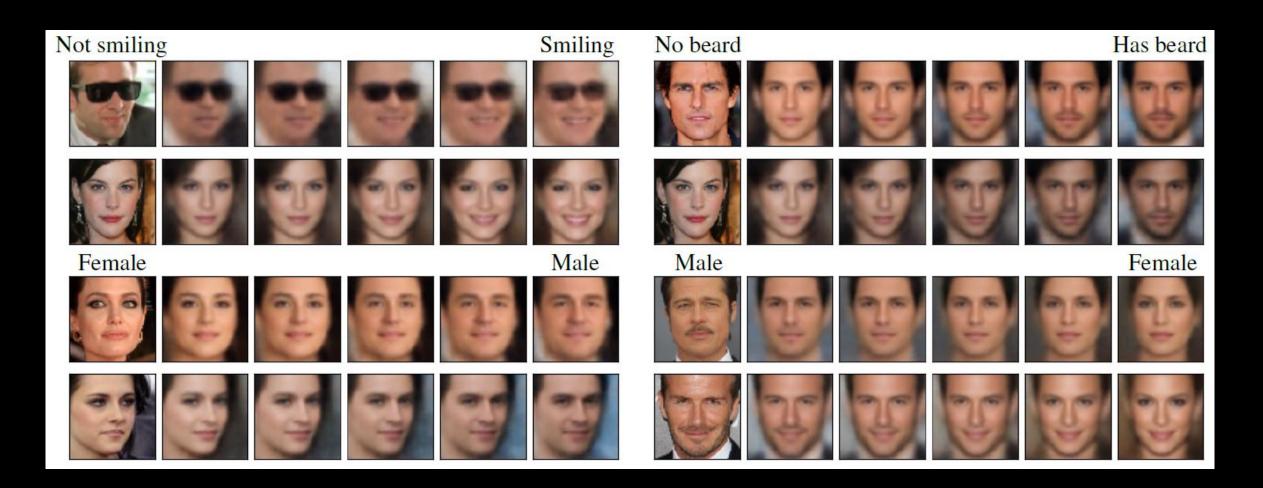


Motivation: Problems in VAEs (as of 2017)

- Inadequate inference networks
 - Loose ELBO
 - Limits what the generative model can learn
- Parametric conditional likelihood assumptions
 - Limits the expressivity of the generative model
 - "Noise term has to explain too much"

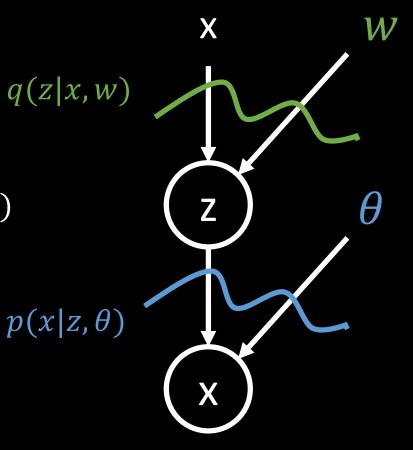
"Blurry images" in VAE models

from [Tulyakov, Fitzgibbon, Nowozin, ICCV 2017]



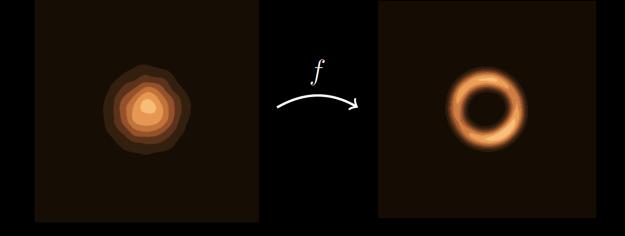
Autoencoder viewpoint

 $\max_{w,\theta} \mathbb{E}_{z \sim q(z|x,w)}[\log p(x|z,\theta)] - D_{\mathrm{KL}}(q(z|x,w) \parallel p(z))$



Improving Inference Networks

- State of the art in inference network design:
 - NICE [Dinh et al., 2015]
 - Hamiltonian variational inference (HVI) [Salimans et al., 2015]
 - Importance weighted autoencoder (IWAE) [Burda et al., 2016]
 - Normalizing flows [Rezende and Mohamed, 2016]
 - Auxiliary deep generative networks [Maaløe et al., 2016]
 - Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016]
 - Householder flows [Tomczak and Welling, 2017]
 - Adversarial variational Bayes (AVB) [Mescheder et al., 2017]
 - Deep and Hierarchical Implicit Models [Tran et al., 2017]
 - Variational Inference using Implicit Distributions [Huszár, 2017]



Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks

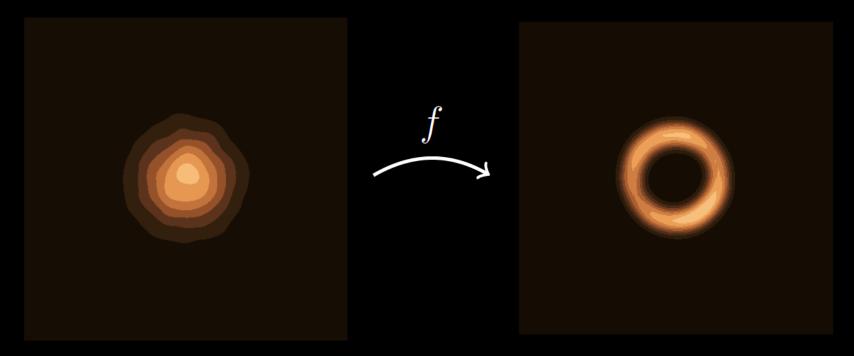
Lars Mescheder, Sebastian Nowozin, Andreas Geiger

ICML 2017 submission

arXiv:1701.04722

High-level idea: 1/2

- What do we currently require from q(z|x, w)?
 - Sampling: $z \sim q(z|x, w)$
 - Log-density computation: $\log q(z|x,w)$



High-level idea: 2/2

$$\mathbb{E}_{z \sim q(z|x,w)} [\log p(x|z,\theta)] - D_{\mathrm{KL}} (q(z|x,w) \parallel p(z))$$

= $\mathbb{E}_{z \sim q(z|x,w)} [\log p(x|z,\theta) + \log p(z) - \log q(z|x,w)]$

• Introduce a real-valued discriminator function T(x, z) such that $T(x, z) \approx -\log p(z) + \log q(z|x, w)$

Variational Approximation

 $\max_{T \in \mathcal{T}} \mathbb{E}_{x \sim p_D} \left[\mathbb{E}_{z \sim q(z|x,w)} \left[\log \sigma(T(x,z)) \right] + \mathbb{E}_{z \sim p(z)} \left[\log(1 - \sigma(T(x,z))) \right] \right]$

Proposition: For q(z|x,w) fixed the optimal discriminator T^* is given by $T^*(x,z) = -\log p(z) + \log q(z|x,w)$.

Rewrite

$$\mathbb{E}_{z \sim q(z|x,w)} [\log p(x|z,\theta) + \log p(z) - \log q(z|x,w)] = \mathbb{E}_{z \sim q(z|x,w)} [\log p(x|z,\theta) - T^*(x,z)]$$

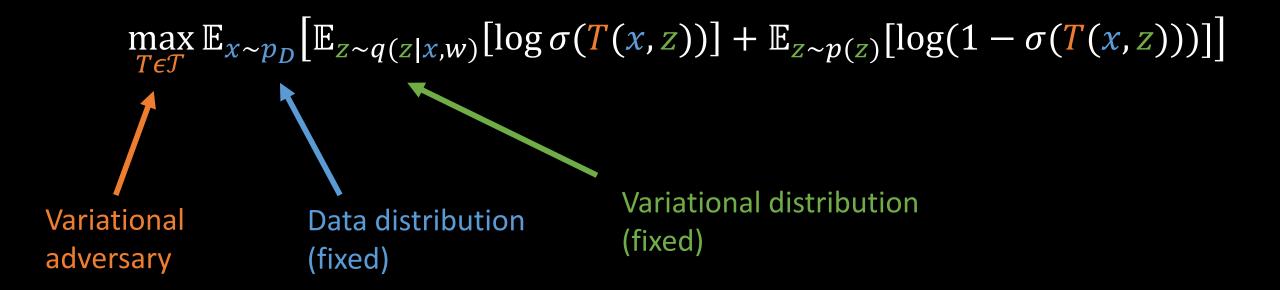
Reparametrization Trick

Learning objective

$$\mathbb{E}_{z \sim q(z|x,w)}[\log p(x|z,\theta) - T^*(x,z)]$$

- Reparametrize [Kingma and Welling, 2013] $z \sim q(z|x,w) \Leftrightarrow \varepsilon \sim \mathcal{N}, z(x,w,\varepsilon)$
- Reparametrized learning objective $\mathbb{E}_{\varepsilon}[\log p(x|z(x, w, \varepsilon), \theta) - T^{*}(x, z(x, w, \varepsilon))]$

Variational Approximation (Discriminator)



Adversarial Variational Bayes

 $\max_{\boldsymbol{\theta}, \boldsymbol{w}} \mathbb{E}_{\varepsilon}[\log p(\boldsymbol{x}|\boldsymbol{z}(\boldsymbol{x}, \boldsymbol{w}, \varepsilon), \boldsymbol{\theta}) - T(\boldsymbol{x}, \boldsymbol{z}(\boldsymbol{x}, \boldsymbol{w}, \varepsilon), \boldsymbol{\psi})]$

 $\max_{\boldsymbol{\psi}} \mathbb{E}_{\boldsymbol{x} \sim p_{D}} \left[\mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z}|\boldsymbol{x}, \boldsymbol{w})} \left[\log \sigma(T(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\psi})) \right] + \mathbb{E}_{\boldsymbol{z} \sim p(\boldsymbol{z})} \left[\log(1 - \sigma(T(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\psi}))) \right] \right]$

- Parameter-free expectation form \rightarrow unbiased estimation
- GAN-type algorithm

Algorithm 1 Adversarial Variational Bayes (AVB)

- 1: i = 0
- 2: while not converged do
- 3: Sample m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data distribution $p_{\mathcal{D}}(x)$.
- 4: Sample *m* examples $\{z^{(1)}, \ldots, z^{(m)}\}$ from prior distribution p(z).
- 5: Sample *m* noise examples $\{\epsilon^{(1)}, \ldots, \epsilon^{(m)}\}$ from $\mathcal{N}(0, 1)$.
- 6: Compute θ -gradient (eq. 3.9):

$$g_{\theta} = \nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} \log p_{\theta} \left(x^{(i)} \mid z_{\phi} \left(x^{(i)}, \epsilon^{(i)} \right) \right)$$

7: Compute ϕ -gradient (eq. 3.9):

$$g_{\phi} = \nabla_{\phi} \frac{1}{m} \sum_{i=1}^{m} \left[-T_{\psi} \left(x^{(i)}, z_{\phi}(x^{(i)}, \epsilon^{(i)}) \right) + \log p_{\theta} \left(x^{(i)} \mid z_{\phi}(x^{(i)}, \epsilon^{(i)}) \right) \right].$$

8: Compute ψ -gradient (eq. 3.3) :

$$g_{\psi} = \nabla_{\psi} \frac{1}{m} \sum_{i=1}^{m} \left[\log \left(\sigma(T_{\psi}(x^{(i)}, z_{\phi}(x^{(i)}, \epsilon^{(i)}))) \right) + \log \left(1 - \sigma(T_{\psi}(x^{(i)}, z^{(i)})) \right) \right].$$

9: Perform SGD-updates for θ , ϕ and ψ : $\theta = \theta + h_i g_{\theta}, \quad \phi = \phi + h_i g_{\phi}, \quad \psi = \psi - h_i g_{\psi}.$ 10: i = i + 111: end while

More Details in the Paper

- Connections to AAE/ALI and f-GAN
- Theory regarding approximation

Experiments

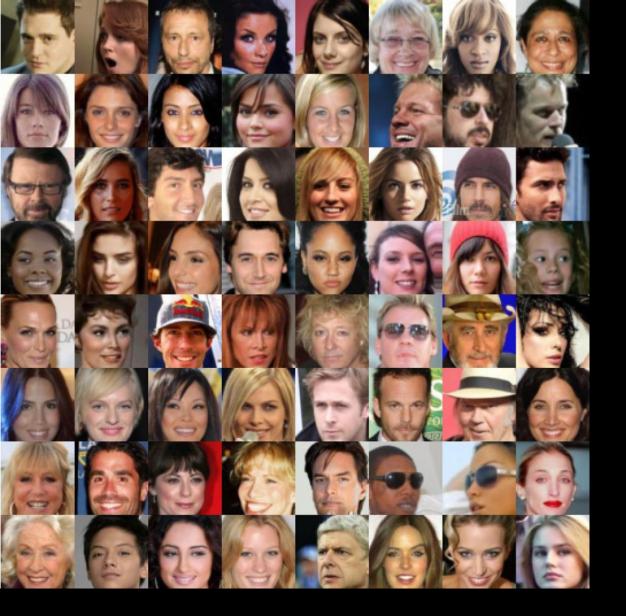
Binarized MNIST

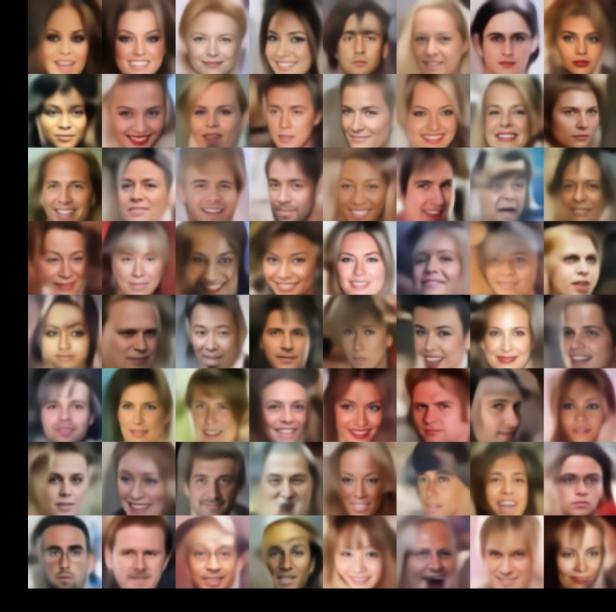
- 28x28 binary images
- 50,000 training images
- 10,000 test images
- Train VAE model

- Report test ELBO
- Report Annealed importance sampling (AIS) estimates of test log-likelihood

Binarized MNIST density estimation

	ELBO	AIS	
AVB (8-dim)	$\approx -83.6 \pm 0.4$	-90.8 ± 1.0	
AVB + AC (8-dim)	$\approx -96.3 \pm 0.4$	-89.7 ± 1.0	
AVB + AC (32-dim)	$pprox -79.5 \pm 0.3$	-80.3 ± 0.6	
VAE (8-dim)	-98.0 ± 0.5	-91.0 ± 0.9	
VAE (32-dim)	-87.2 ± 0.3	-82.1 ± 0.6	
VAE + HF (T=2)	-79.5	—	(Tomczak & Welling, 2016)
VAE + NF (T=80)	-85.1		(Rezende & Mohamed, 2015)
VAE + NICE (T=80)	-88.3	—	(Dinh et al., 2014)
VAE + HVI (T=16)	-88.3	—	(Salimans et al., 2015)
convVAE + HVI (T=16)	-84.1	—	(Salimans et al., 2015)
VAE + VGP (2hl)	-81.3	—	(Tran et al., 2015)
DRAW + VGP	-79.9	—	(Tran et al., 2015)
VAE + IAF	-80.8	_	(Kingma et al., 2016)
Auxiliary VAE (L=2)	-83.0		(Maaløe et al., 2016)





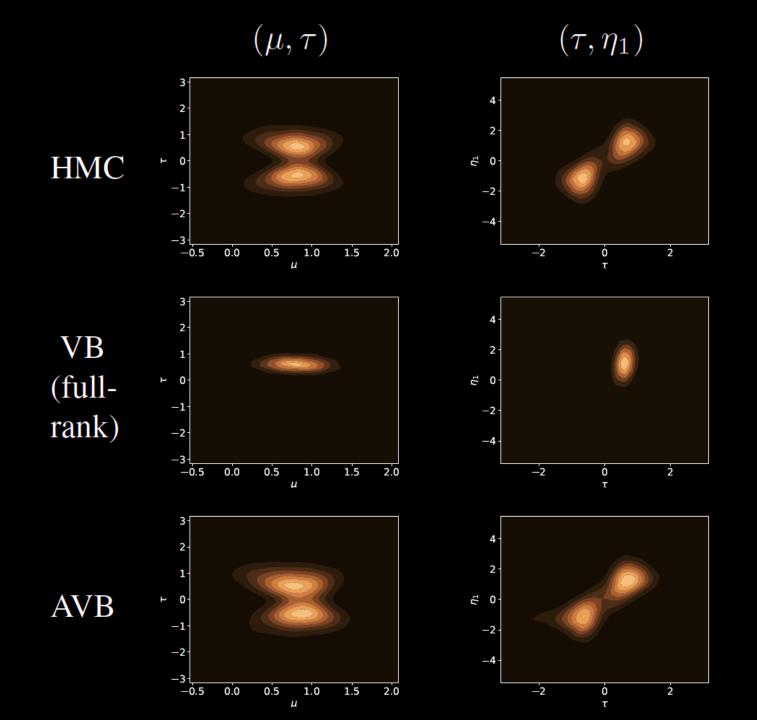
Dataset samples

CelebA face images

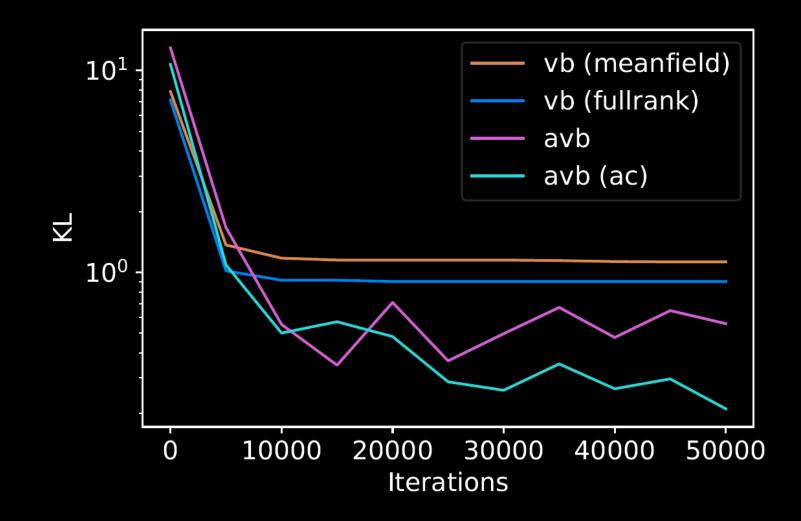
Model samples

VB for Parameter Inference

- Stan [Stan Development Team, 2016]
- Eight schools model [Gelman et al., 2014]
- Eight parameters
- Ground truth posterior: MCMC with Hamiltonian Monte Carlo, 500k iterations (PyStan)
- Estimate KL divergence to true posterior
 - ITE package [Szabo, 2013]



KL to true posterior



Conclusions

- AVB: likelihood-free variational families
- State-of-the-art performance in competitive VAE field
- Parameter Variational Bayes in large variational families
- Our TensorFlow implementation coming soon!
 - Third party implementation from Ben Poole: https://gist.github.com/poolio/b71eb943d6537d01f46e7b20e9225149

Outline

- 1. f-Divergences (GAN)
- 2. Proper Scoring Rules (VAE)
- 3. Integral Probability Metrics (DISCO, MMD, WGAN)
- 4. Current research areas

Kernel Two-Sample Tests

• [Gretton et al., "A Kernel Two-sample Test", JMLR 2012]

Maximum Mean Discrepancy (MMD)

$$\gamma_{\mathcal{F}}(P,Q) = \sup_{f \in \mathcal{F}} \left| \int f dP - \int f dQ \right|$$

Kernel Two-Sample Tests

• If \mathcal{F} is a unit-ball in a reproducing kernel Hilbert space \mathcal{H} we have

$$\gamma_{\mathcal{F}}(P,Q) = \sup_{f \in \mathcal{F}} \left| \int f dP - \int f dQ \right| = \left\| \mu_P - \mu_Q \right\|_{\mathcal{H}}$$

Kernel mean embedding of a probability measure

$$\mu_P = \int k(x,\cdot) P(\mathrm{d}x)$$

• Estimator given sample $X = (x_1, \dots, x_N)$ and $Y = (y_1, \dots, y_M)$ $MMD^2(X, Y) = \frac{1}{N(N-1)} \sum_{n \neq n'} k(x_n, x_{n'}) + \frac{1}{M(M-1)} \sum_{m \neq m'} k(y_m, y_{m'}) - \frac{2}{MN} \sum_{m=1}^M \sum_{n=1}^N k(x_n, y_m)$

Kernel MMD Training in Deep Learning

- Deep generative models [Li et al., 2015], [Dziugaite et al., 2015]
- Use for model criticism [Sutherland et al., ICLR 2017]

[Dziugaite et al., 2015]

• Neural MNIST/faces samples (RBF kernel)

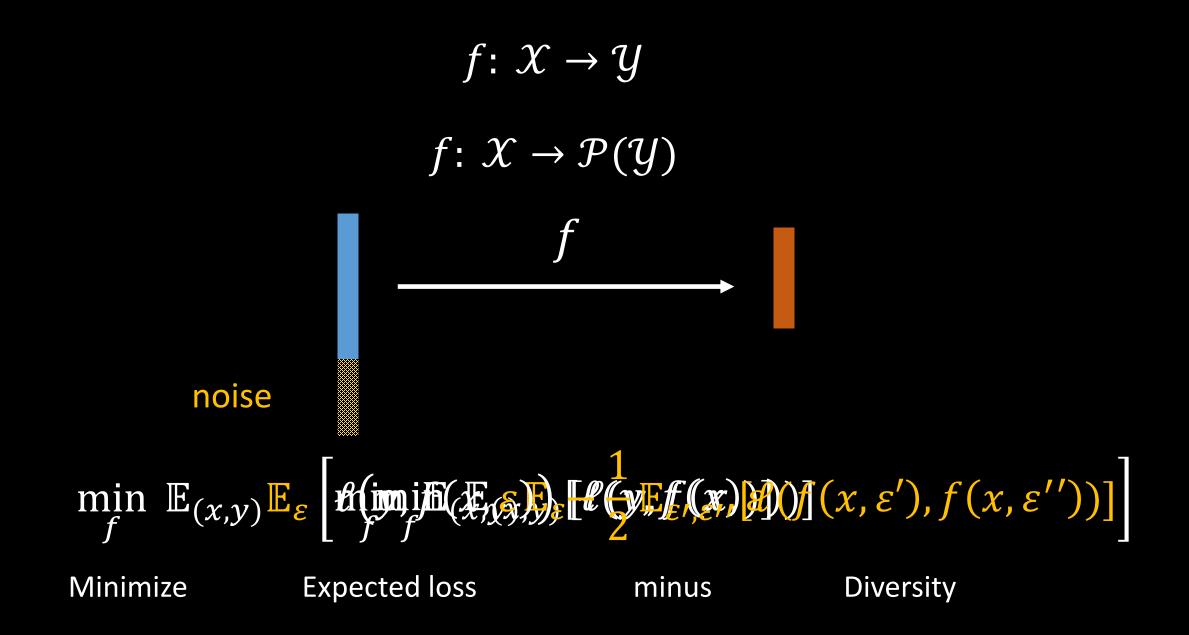
C.	7	4	1	5	8	6	7	1	P -1
3	4	8	1	9	5	8	4	٩	g
4	Ø	3	5	0	3	1	4	2	0
î	3	1	5	2	3	7	4	3	9
3	7	7	6	Ģ.	Ó	0	в	9	5
7	9	ij	3	5	5	Ó	0	B	8
4	لأل	3	59	ţ.,	3	7	0	0	7
ł	S	ĝ	5.	İ	6	ţÿ	9	4	3
7	2	1	8	<u> </u>	X	2	9	5	1
P	C)	3	9	3	S.	Ť	3	4	ž

DISCO Nets: DISsimilarity COefficients Networks

Diane Bouchacourt (Oxford) Pawan Kumar (Oxford) Sebastian Nowozin

NIPS 2016

arXiv:1606.02556



Constructing Divergence from Loss

- Loss $\Delta(y, y')$
- True joint distribution T(x, y)
- Model distribution P(y|x)
- Expected loss (diversity coefficient) $DIV(Q,P) = \mathbb{E}_{x \sim T(x)} \left[\mathbb{E}_{y \sim Q(y|x)} \left[\mathbb{E}_{y' \sim P(y|x)} [\Delta(y,y')] \right] \right]$
- Dissimilarity coefficient [Rao, 1982] DISC $(Q, P) = DIV(Q, P) - \gamma DIV(P, P)$

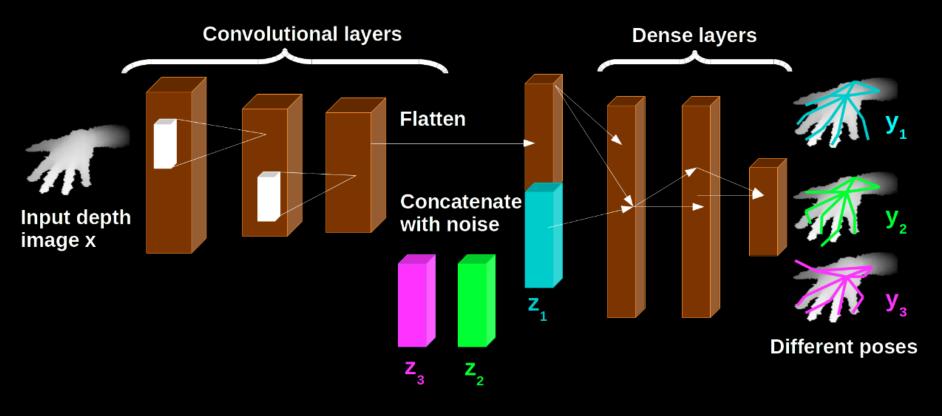
• $\gamma = \frac{1}{2}$

Relation to Scoring rules and Kernel MMD

- Via [Gneiting and Raftery, 2007]: For $\Delta_{\beta}(y, y') = ||y - y'||_2^{\beta}$, with $\beta \in (0,2)$ DISCO is a proper scoring rule.
- Via [Schölkopf, 2001]: For $k(y, y') = ||y - y'||_2^{\beta}$, with $\beta \in (0,2)$, k is conditionally positive definite and DISCO is the kernel MMD objective with $k = \Delta$.

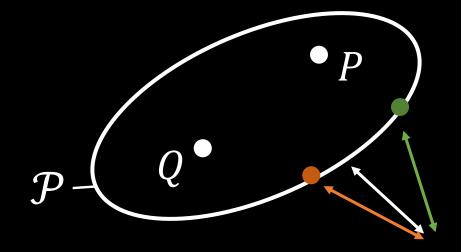
DISCO Nets

with Diane Bouchacourt, Pawan Kumar, NIPS 2016, arXiv:1606.02556

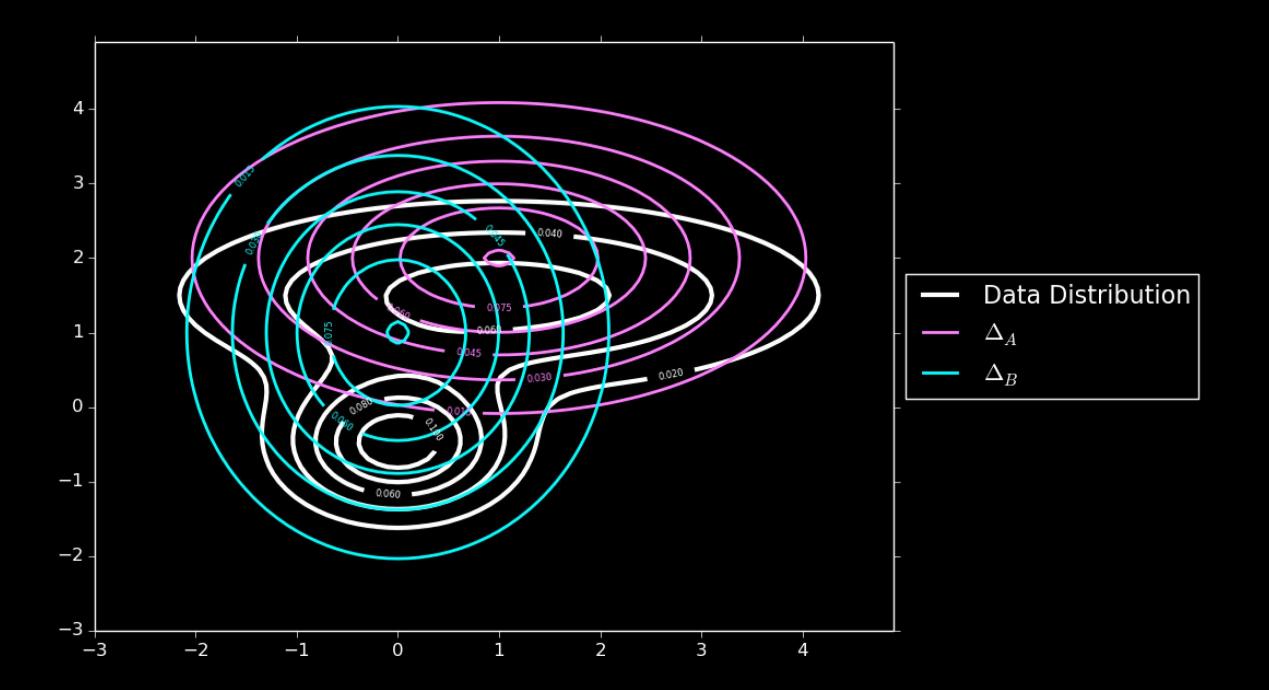


 $DISC(Q, P) = DIV(Q, P) - \gamma DIV(P, P)$

Bayesian Decision Theory



- "The well-calibrated Bayesian" [Dawid, 1982]
- "Loss-calibrated Bayesian" [Lacoste-Julien et al., 2011]
- [Pletscher, Nowozin, Rother, Kohli, 2011]
- [Fushiki, 2005]



Wasserstein Distance

$$\gamma_{\mathcal{F}}(P,Q) = \sup_{f \in \mathcal{F}} \left| \int f dP - \int f dQ \right|$$

- Wasserstein GAN [Arjovsky et al., 2017]
- $\mathcal{F} = \{f : \|f\|_L \le 1\}$, with separable metric space (M, ρ)

$$||f||_L = \sup\{\frac{|f(x) - f(y)|}{\rho(x, y)} : x \neq y \text{ in } M\}$$

• [Sriperumbudur et al., JMLR 2010]

Wasserstein GAN, [Arjovsky et al., 2017]

Kantorovich-Rubinstein duality

$$W(P,Q) = \max_{\|f\|_{L} \le 1} \left(\mathbb{E}_{x \sim P}[f(x)] - \mathbb{E}_{x \sim Q}[f(x)] \right)$$

• How to set up rich function class uniformly respecting $||f||_L \le 1$?

- [Arjovsky et al., 2017]: weight clipping ("Weight clipping is a clearly terrible way to enforce a Lipschitz constraint")
- [Gulrajani et al., 2017]: regularize gradient norm (DL frameworks such as TensorFlow easily support this.)

Outline

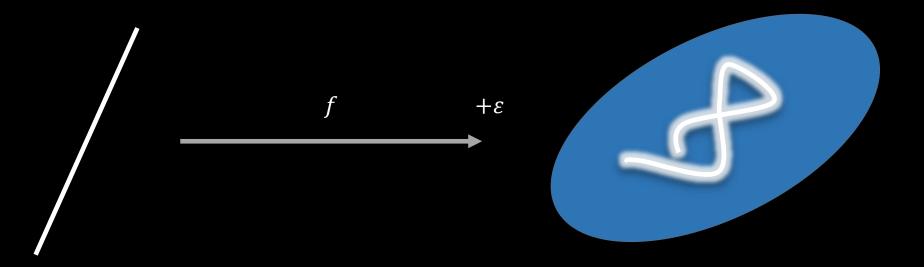
- 1. f-Divergences (GAN)
- 2. Proper Scoring Rules (VAE)
- 3. Integral Probability Metrics (DISCO, MMD, WGAN)
- 4. Current research areas

Current Research Areas

GANs as building blocks

- For inference (as in AVB), or
- As model component or regularizer

Dimensionality / Stability (IPM/GAN)



Adding Noise [Sønderby et al., 2016], [Arjovsky and Bottou, 2016]

Structuring the Latent Space

- Adding semantics through supervision [Louizos et al., ICLR 2016]
- Control of information/representation stored in latent factors [Chen et al., ICLR 2017], [Alemi et al., ICLR 2017], [Chalk et al., 2016], [Bouchacourt et al., 2017]

Interpolating in latent space

Bayesian Deep Learning

- Bayesian neural networks make rapid progress
 - Stochastic Gradient Langevin Dynamics (SGLD) based algorithms [Li et al., AAAI 2016], [Springenberg et al., NIPS 2016], [Gan et al., ACL 2017], [Ahn et al., ICML 2012], [Welling and Teh, ICML 2011]
 - Stochastic Variational Bayes [Kingma et al, NIPS 2015], [Blundell et al., ICML 2015], [Hinton and Van Camp, 1993]
 - SGD as Variational Inference [Mandt et al., 2016], [Duvenaud et al., AISTATS 2016]
 - Dropout as Variational Inference [Gal and Ghahramani, 2015]
- The most powerful probabilistic deep learning models have no practical Bayesian version (yet)
- Reason 1: Likelihood not accessible
- Reason 2: Stability and variance issues
- Reason 3: Posterior/model size

Stabilizing GAN Training

Thanks!

Additional Slides

LSUN Natural Images

- [Yu et al., 2015] one of the largest databases of natural images
- 168k images of classrooms
- [Radford et al., 2015] architecture
 - Generator: deconvolutional network, ~3M parameters
 - Variational function: convnet, ~3M parameters
- Batch normalization, gradient clipping, Adam
- ~24 hours training time (Titan X), ~200 images/s

GAN (Jensen-Shannon)

Hellinger

Kullback-Leibler

• Explanation for lack of differences in [Poole et al., arXiv:1612.02780]

Conclusion

- Generative model revival
- Powered by deep neural networks
- Key properties:
 - Training by backprop
 - Efficient at test time

Probabilistic Modeling

- Model of uncertainty is important in many applications
- Generative or discriminative
- Typical operations on model $\mathbf{P} \in \mathcal{P}$
 - Sampling: $x \sim P$
 - *Estimation*: given iid samples $\{x_1, \dots, x_n\}$, find good $P \in \mathcal{P}$
 - Likelihood evaluation: given x, evaluate likelihood P(x)
 - Marginalization and conditioning

Bayesian Decision Theory

- [Savage 1954]: every rational behaviour can be factorized into maintaining coherent beliefs and making optimal decisions under beliefs.
- *Likelihood-principle*: the only way to maintain coherent beliefs is due to Bayes rule
- Foundation of the *subjective Bayesian* school: choice of prior and utility

Conditioned on assumed model

MNIST Setup

- Model of [Goodfellow et al., NIPS 2014]
- Generator, ~2.5M parameters

 $z \rightarrow \text{Linear}(100, 1200) \rightarrow \text{BN} \rightarrow \text{ReLU} \rightarrow \text{Linear}(1200, 1200) \rightarrow \text{BN} \rightarrow \text{ReLU}$ $\rightarrow \text{Linear}(1200, 784) \rightarrow \text{Sigmoid}$

• Variational function, ~250k parameters

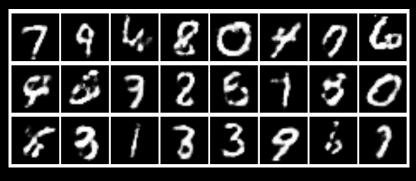
 $x \rightarrow \text{Linear}(784,240) \rightarrow \text{ELU} \rightarrow \text{Linear}(240,240) \rightarrow \text{ELU} \rightarrow \text{Linear}(240,1)$

- Evaluation using KDE log-likelihoods
 - Known shortcomings, but popular in other works

MNIST Results

Training divergence	KDE $\langle LL \rangle$ (nats)	\pm SEM
Kullback-Leibler	416	5.62
Reverse Kullback-Leibler	319	8.36
Pearson χ^2	429	5.53
Neyman χ^2	300	8.33
Squared Hellinger	-708	18.1
Jeffrey	-2101	29.9
Jensen-Shannon	367	8.19
GAN	305	8.97
Variational Autoencoder [18]	445	5.36
KDE MNIST train (60k)	502	5.99

Kullback-Leibler



Reverse Kullback-Leibler

\mathcal{O}	0	3	8	7	9	5	9
(y)	4	7	7	7	2	4	je se
57	5	J	Ο	9	2	9	9

Hellinger

NYU Hand dataset

- [Tompson et al., 2014], depth and hand pose annotations
- 72,757 training images, 8,252 testing images
- 14 joints
- Setup and architecture from [Oberweger et al., 2015]
- Minimum expected loss decisions
- Different loss functions

Quantitative results (NYU test)

Model	ProbLoss (mm)	MeJEE (mm)	MaJEE (mm)	FF (80mm)
$BASE_{\beta=1,\sigma=1}$	$103.8 {\pm} 0.627$	$25.2{\pm}0.152$	52.7±0.290	86.040
$BASE_{\beta=1,\sigma=5}$	99.3±0.620	$25.5 {\pm} 0.151$	$52.9 {\pm} 0.289$	85.773
$BASE_{\beta=1,\sigma=10}$	96.3±0.612	$25.7 {\pm} 0.149$	$53.2 {\pm} 0.288$	85.664
$\text{DISCO}_{\beta=1,\gamma=0.5}$	$\textbf{83.8} \pm \textbf{0.503}$	20.9±0.124	45.1±0.246	94.438

Model	ProbLoss (mm)	MeJEE (mm)	MaJEE (mm)	FF (80mm)
cGAN	442.7±0.513	109.8 ± 0.128	201.4 ± 0.320	0.000
cGAN _{init, fixed}	$128.9 {\pm} 0.480$	31.8 ± 0.117	64.3 ± 0.230	78.454
$DISCO_{\beta=1,\gamma=0.5}$	$\textbf{83.8} \pm \textbf{0.503}$	20.9±0.124	45.1±0.246	94.438

NIPS 2016 Paper Contributions

- Generalizes GAN objective to arbitrary *f*-divergences
- Simplifies the GAN algorithm
- Local convergence proof

Experiments

Synthetic 1D Univariate

Approximate a mixture of Gaussians by a Gaussian to

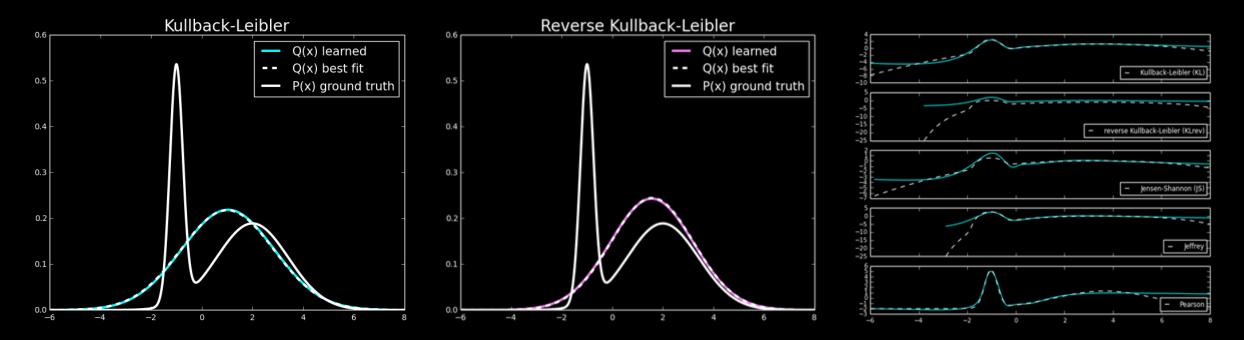
- Validate the approach
- Demonstrate the properties of different divergences [Minka, 2005]

We compare the exact optimisation of the divergence with the GAN approach

Setup

- Data: P(x) is a mixture of Gaussians (any number of samples, not just a data set)
- Generator: Q(x) is the distribution of $\mu + \sigma z$ where $z \sim N(0,1)$ (Gaussian)
- Discriminator: T(x) is a two-layer NN with tanh units

Synthetic 1D Univariate



	KL	KL-rev	JS	Jeffrey	Pearson
$\begin{array}{c} D_{f}(P Q_{\theta}*) \\ F(\hat{\omega},\hat{\theta}) \end{array}$	0.2831	0.2480	0.1280	0.5705	0.6457
	0.2801	0.2415	0.1226	0.5151	0.6379
$\mu^* \ \hat{\mu}$	1.0100	1.5782	1.3070	1.3218	0.5737
	1.0335	1.5624	1.2854	1.2295	0.6157
$\sigma^* \ \hat{\sigma}$	1.8308	1.6319	1.7542	1.7034	1.9274
	1.8236	1.6403	1.7659	1.8087	1.9031

f-GAN Future Work

- Applications to discriminative models
- Applications to Reinforcement Learning
 - Model-based RL, modelling $P(s_{t+1}, r_t | s_t, a_t)$
 - Policy-gradient methods, modelling $P(a_t|s_t)$
 - Promising method to handle large state and action spaces
- Applications to Variational Bayes: variational family of distributions
- Extension to discrete outputs (structured prediction)

• Text

- Encoder/Decoder bidirectional models (e.g. BiCGAN)
- Factorized latent space (e.g. style/content separation), (e.g. InfoGAN)

Conclusions (DISCO)

- Learning probabilistic models under misspecification
- Starting point: task-specific loss function
- Theory from: proper scoring rules, kernel MMD
- Good empirical results on challenging application

Learning Probabilistic Models

Integral Probability Metrics
[Müller, 1997]
[Sriperumbudur et al., 2010]

$$\gamma_{\mathcal{F}}(P,Q) = \sup_{f \in \mathcal{F}} \left| \int f dP - \int f dQ \right|$$

- P: Expectation
- Q: Expectation
- Structure in ${\mathcal F}$
- Examples:
 - Energy statistic [Szekely, 1997]
 - Kernel MMD [Gretton et al., 2012], [Smola et al., 2007]
 - Wasserstein distance [Cuturi, 2013]
 - DISCO Nets [Bouchacourt et al., 2016]

Learning Probabilistic Models

[Nguyen et al., 2010], [Reid and Williamson, 2011], [Goodfellow et al., 2014] Variational representation of divergences

- P: Expectation
- Q: Expectation

- P: Distribution
- Q: Expectation

- P: Distribution
- Q: Distribution

$$f$$
-divergences

Divergence between two distributions

$$D_f(P \parallel Q) = \int_{\mathcal{X}} q(x) f\left(\frac{p(x)}{q(x)}\right) dx$$

• $f: \mathbb{R}_+ \to \mathbb{R}$ convex, lower-semicontinuous • f(1) = 0.

Estimating f-divergences from samples

- [Nguyen, Wainwright, Jordan, Information Theory, 2010]
- Every convex function f has a convex *Fenchel conjugate* f^* so that

$$f(u) = \sup_{t \in \text{dom}_{f^*}} \{tu - f^*(t)\}$$

Estimating f-divergences from samples (cont)

$$f(P \parallel Q) = \int_{\mathcal{X}} q(x) f\left(\frac{p(x)}{q(x)}\right) dx$$

$$= \int_{\mathcal{X}} q(x) \sup_{t_{x} \in \text{dom}_{f^{*}}} \left\{ t_{x} \frac{p(x)}{q(x)} - f^{*}(t_{x}) \right\} dx$$

$$\geq \sup_{T \in \mathcal{T}} \left(\int_{\mathcal{X}} p(x) T(x) dx - \int_{\mathcal{X}} q(x) f^{*}(T(x)) dx \right)$$

$$= \sup_{T \in \mathcal{T}} \left(\mathbb{E}_{x \sim P}[T(x)] - \mathbb{E}_{x \sim Q}[f^{*}(T(x))] \right)$$

VAE: Maximum Likelihood Training

• Maximize the data log-likelihood, per-instance variational approximation

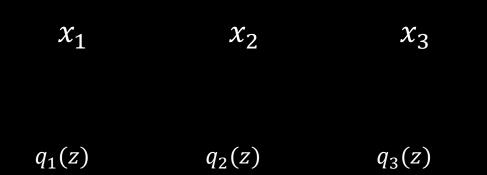
$$\log p(x|\theta) = \log \int p(x|z,\theta)p(z)dz$$

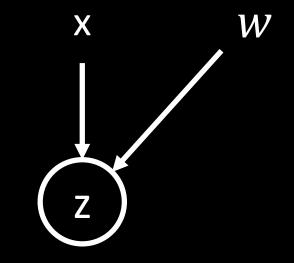
= $\log \int p(x|z,\theta)\frac{q(z)}{q(z)}p(z) dz$
= $\log \int p(x|z,\theta)\frac{p(z)}{q(z)}q(z) dz$
= $\log \mathbb{E}_{z \sim q(z)} \left[p(x|z,\theta)\frac{p(z)}{q(z)} \right]$
 $\geq \mathbb{E}_{z \sim q(z)} \left[\log p(x|z,\theta)\frac{p(z)}{q(z)} \right]$
= $\mathbb{E}_{z \sim q(z)} [\log p(x|z,\theta)] - D_{\mathrm{KL}}(q(z) \parallel p(z))$

Inference networks

- Amortized inference [Stuhlmüller et al., NIPS 2013]
- Inference networks
- "Informed sampler" [Jampani et al., 2014]
- "Memory-based approach" [Kulkarni et al., 2015]

Inference networks





VAE: Maximum Likelihood Training

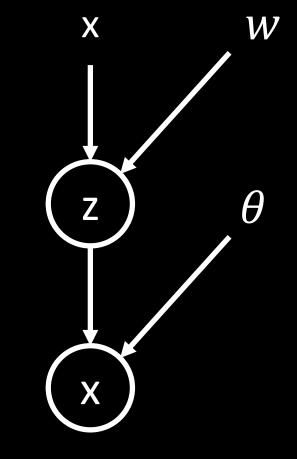
• Maximize the data log-likelihood, inference network variational approximation

$$\log p(x|\theta) = \log \int p(x|z,\theta) p(z) dz$$

= $\log \int p(x|z,\theta) \frac{q(z|x,w)}{q(z|x,w)} p(z) dz$
= $\log \int p(x|z,\theta) \frac{p(z)}{q(z|x,w)} q(z|x,w) dz$
= $\log \mathbb{E}_{z \sim q(z|x,w)} \left[p(x|z,\theta) \frac{p(z)}{q(z|x,w)} \right]$
 $\geq \mathbb{E}_{z \sim q(z|x,w)} \left[\log p(x|z,\theta) \frac{p(z)}{q(z|x,w)} \right]$
= $\mathbb{E}_{z \sim q(z|x,w)} [\log p(x|z,\theta)] - D_{\mathrm{KL}}(q(z|x,w) \parallel p(z))$

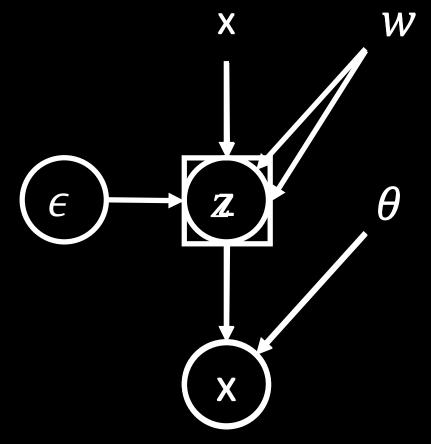
Reparametrization Trick

• [Rezende et al., 2014] [Kingma and Welling, 2014]



Reparametrization Trick

- [Rezende et al., 2014] [Kingma and Welling, 2014]
- Stochastic computation graphs [Schulman et al., 2015]



Derivatives

 $\nabla_{\mathbf{W}} \mathbb{E}_{z \sim q(z|x,\mathbf{W})} [\log p(x|z,\theta) - T^*(x,z)]$

 $T^* = \underset{T \in \mathcal{T}}{\operatorname{argmax}} \mathbb{E}_{x \sim p_D} \Big[\mathbb{E}_{z \sim q(z|x,w)} [\log \sigma(T(x,z))] + \mathbb{E}_{z \sim p(z)} [\log(1 - \sigma(T(x,z)))] \Big]$

Proposition: For any q(z|x, w) we have $\mathbb{E}_{z \sim q(z|x, w)}[\nabla_w T^*(x, z)] = 0.$