1. Electronic what ?!

Definition
An electronic nose (eNose) is a device which is composed of chemical sensors and a pattern-recognition system for recognizing odours [1].

Machine Learning stage
It produces a signature when an odour is introduced. ML algorithms are then used to identify the odour.

However, our eNose outputs up to ∼100 time series, from which we need to extract a smaller set of relevant features. The solution proposed here is to extract them from a physical model.

Applications
- Biomedical engineering, Food-processing industry, Mine-clearing, Cosmetics, Olfactive navigation...

2. NeOse

Our work is based on the NeOse eNose, developed by Arysta LifeScience, a French start-up located at CEA in Grenoble.

Imaging technique
A light beam is sent to and reflected by the surface. When interactions occur, the refraction index changes and thus the reflected light changes (Fig. 3).

Molecular interaction
For each peptide, the following binding reaction occurs when a molecule M is introduced:

\[M + P \rightarrow \text{complex} \]

From this 1st order reaction, the kinetic of complex formed is obtained using the kinetics parameters \(k_1 \) and \(k_2 \):

\[
\frac{d[M][P]}{dt} = k_1[M](t) - k_2[M][P](t)
\]

Sensor model

From this 1st order reaction, the kinetic of complex formed \(MP \) is obtained using the kinetics parameters \(k_1 \) and \(k_2 \):

\[
\frac{d[M][P]}{dt} = k_1[M](t) - k_2[M][P](t)
\]

Langmuir model

The Langmuir model explains well the absorption but is sometimes poor in the desorption phase.

Perspectives
- Explain desorption patterns.
- Collect larger and harder data set.

3. Data acquisition

Fig. 4: Acquisition plan.

- Baseline acquisition
- Gas on at \(t = t_s \)
- Gas off at \(t = t_0 \)

4. Data processing

Data are usually processed according to the plan [2]:

- Feature selection
- Feature extraction
- Normalization
- Classification
- Validation

5. Sensor model

Fig. 7: Simplified molecular interaction.

Multi-Dimensional Scaling and Classification

Data set: 8 molecules, repeated 20 times at constant temperature.

Fig. 9: MDS with \(k_1 \) and \(k_2 \)

(a) MDS with \(k_1 \)
(b) MDS with \(k_2 \)
(c) MDS with \(\theta \)

We use the features \((k_1, k_2, \theta) \), the static response in a classifier such as k-NN and SVM. Each feature gives a cross-validated score of 100%.

6. Results

Model fitting

The Langmuir model is fitted using nonlinear least-squares (with BFGS).

Fig. 8: Solid lines are real data after baseline subtraction (butyric-acid, isovaleric-acid, propionic-acid, valeric-acid) and dashed lines the fitted values.

7. Discussion

Conclusion
- Langmuir model explains well the absorption but is sometimes poor in the desorption phase.
- The features extracted from the dynamics are reproducible and discriminative.

Perspectives
- Collect larger and harder data set.

Acknowledgments

This work was supported by Decoda project (ERK Aid 326294), FUI WISE-AAP 21 project and Banque Publique d’Investissement. The authors would like to acknowledge Aurélien Bélut from CEA INAC for his help on Langmuir model.