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The Problem

min
x∈Rd

f (x) := 1
n

n∑
i=1
fi(x) (1)

• fi is Li-smooth but non-convex
•n is big

Arbitrary Sampling

•Sampling: a random set-valued mapping S with
values being subsets of [n] := {1, 2, . . . , n}. A
sampling is used to generate minibatches in each
iteration.

•Probability matrix associated with sampling S :
Pij

def= Prob({i, j} ⊆ S)
•Probability vector associated with sampling S :

p = (p1, . . . , pn), pi
def= Prob(i ∈ S)

•Minibatch size: b = E [|S|] (expected size of S)
•Proper sampling: Sampling for which pi > 0 for
all i ∈ [n]

• “Arbitrary sampling” = any proper sampling

Main Contributions

•We develop arbitrary sampling variants of 3
popular variance-reduced methods for solving the
non-convex problem (1): SVRG [1], SAGA [2],
SARAH [3].

•Our rates for b = 1: up to n× better (depending
on {Li}). Improvements even in the case when
Li = Lj for all i, j (for SVRG & SAGA).

•Our rates for b ≥ 1: Linear or superlinear
speedup in minibatch size b. That is, # of
iterations needed to output a solution of a given
accuracy drops by a factor equal or greater to b.

•We design importance sampling & approximate
importance sampling for minibatches, which
vastly outperform standard uniform minibatch
strategies in practice.

Key Lemma

Let ζ1, ζ2, . . . , ζn be vectors in Rd and let ζ̄ def=
1
n

∑n
i=1 ζi be their average. Let S be a proper sam-

pling. Let v = (v1, . . . , vn) > 0 be such that
P− pp> � Diag(p1v1, p2v2, . . . , pnvn). (2)

Then

E

∥∥∥∥∥∥
∑
i∈S

ζi
npi
− ζ̄

∥∥∥∥∥∥
2 ≤ 1

n2

n∑
i=1

vi
pi
‖ζi‖2.

Whenever (2) holds, it must be the case that
vi ≥ 1− pi.

Optimal Sampling & Superlinear
Speedup

•Under our analysis, the independent sampling S∗
defined by

pi
def=


(b + k − n) Li∑k

j=1Lj,
if i ≤ k

1, if i > k
,

is optimal, where k is the largest integer
satisfying 0 < b + k − n ≤

∑k
i=1Li
Lk

.
•All 3 methods enjoy superlinear speed in b up to
the minibatch size
bmax := max{b | bLn ≤

∑n
i=1Li}.

# Stochastic Gradient Evaluations to Achieve E [‖∇f (x)‖2] ≤ ε

Alg Uniform sampling Arbitrary sampling [NEW] S∗ [NEW]

SVRG max
{
n, (1+4/3)Lmaxc1n

2/3

ε

}
[1] max

{
n, (1+4α/3)L̄c1n

2/3

ε

}
max

n, (1+4(n−b)
3n )L̄c1n

2/3

ε


SAGA n + 2Lmaxc2n

2/3

ε [2] n + (1+α)L̄c2n
2/3

ε n + (1+n−b
n )L̄c2n

2/3

ε

SARAH n +
n−b
n−1L

2
maxc3
ε2 [3] n + αL̄2c3

ε2 n +
n−b
n L̄

2c3
ε2

Constants: Lmax = maxiLi L̄ = 1
n

∑
iLi c1, c2, c3 = universal constants α := b

L̄2n2
∑n
i=1

viL
2
i

pi

Samplings

• Uniform Su: Every subset of [n] of size b
(minibatch size) is chosen with the same
probability: 1/(nb)

• Independent S∗: For each i ∈ [n] we
independently flip a coin, and with probability pi
include element i into S.

• Approximate Independent Sa: Fix some
k ∈ [n] and let a = dkmaxi≤k pie. We now
sample a single set S ′ of cardinality a using the
uniform minibatch sampling Su. Subsequently,
we apply an independent sampling S∗ to select
elements of S ′, with selection probabilities
p′i = kpi/a. The resulting random set is Sa.

SVRG with Arbitrary Sampling

Algorithm 1: SVRG (x0,m, T, η, S)
x̃0 = x0

m = x0, M = dT/me;
for s = 0 to M − 1 do
xs+1

0 = xsm; gs+1 = 1
n

∑n
i=1∇fi(x̃s)

for t = 0 to m− 1 do
Draw a random subset (minibatch) St ∼ S
vs+1
t = ∑

it∈St
1
npit

(∇fit(xs+1
t )−∇fit(x̃s)) + gs+1

xs+1
t+1 = xs+1

t − ηvs+1
t

end
x̃s+1 = xs+1

m

end
Output: Iterate xa chosen uniformly random
from {{xs+1

t }mt=0}Ms=0

Numerical Results
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