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Deep Learning
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Figure: Fully Connected Neural Network with two hidden layers.

Wi matrices can be very large:
•millions of parameters
• several gigabytes of memory

Distributed Deep Learning

Parameters Server

Node 1 Node 2

...

Node N-1 Node N
GPU GPU

GPU GPU

GPU GPU

GPU GPU

GPU GPU

GPU GPU

GPU GPU

GPU GPU

... ... ... ... ... ... ... ... ... ... ... ...

grads
params

grads
params

grads
params

grads
params

Figure: Asynchronous Synchronization of different nodes with the parameters server.
The parameters and the gradients needs to traverse the network.

Distributed computing allows fast training of NN but given the
amount of parameters in recent very deep network architectures, a
large bandwidth is needed to transfer the gradients and parame-
ters updates.

Reducing network communication

Terngrad [1]: Gradients are quantized into ternary precisions
before being sent to the parameters server: {−1, 0, 1}.
Sufficient Broadcasting [2]: the parameters update ∇W is a
low-rank matrix and can be written ∇W = uvT . The matrix is
decomposed before being sent to the parameters server.

Those techniques can reduce memory footprint of parameters and/or
gradients which reduces communication time between workers and
Parameters server. This comes with some limitations:

• additional operations on top of the training,
• techniques independent of the training.

Main Idea: Using Circulant Matrices
to reduce network bandwidth

A circulant matrix C ∈ Rn×n can be defined by:

C = circ(c) =
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with c ∈ Rn and c = [c0, c1, c2, ..., cn−1].

Circular convolution Theorem
C · x = F−1(F(c)× F(x))

With x ∈ Rn and F denotes to the Fourier Transform.

Main Advantages
•Reduce the memory required of the parameters (only the
redundant vector has to be stored in memory).
•Circulant matrices can be trained end-to-end to improve
performances.
•Reduce the complexity with the use of FFT algorithm.
•Reduce the amount of communication between nodes
with distributed computing.

Preliminary Results

Experiments realized with a 5 layers architecture:
• 2 convolution layers
• 3 fully connected layers with either dense or circulant matrix

Type #Params Compress. (%) Precision (%)
dense 280 464 - 99.14

circulant 14 224 94.92 98.55
Table: Result on MNIST Dataset

Type #Params Compress. (%) Precision (%)
dense 1 068 298 - 84.2

circulant 112 896 89.43 80.0
Table: Result on CIFAR10 Dataset

Future work
• Improve and understand the training and convergence NN with
Circulant Matrices
•Use Circulant Matrices on large scale distributed computing
• Investigate other structured matrices.
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