1. Introduction

Complicated models like neural networks, boosting or bagging have become dominant in terms of their performance, but they mostly remain black boxes. DALEX (Descriptive mAchine Learning EXplanations) is a set of tools that helps to validate, understand and improve complex models. It provides multiple techniques for explaining predictions both locally and globally. Moreover, DALEX is equipped with model-agnostic (inspired by LIME, [1]) methodologies for visual presentation of explanations. DALEX has been used in companies like Disney (platform ESPN+), Trivadis, Gradient for audience segmentation, and KRUK for risk models validation.

2. Model validation

Let’s take two models with equal MSE values and analyze their residuals (tail distribution).

Random forest model has in general smaller residuals than linear model, yet a tiny fraction of very large residuals affects the root mean square. Which model is better now?

3. Local explanation

Single prediction explainers are designed to decompose model prediction into parts contributed by separate variables. The model agnostic feature contribution is based on distances to relaxed model predictions. Detailed description may be found in [2].

Merging Path Plot analyzes model structure and suggests its improvements. In the plot below we observe optimal partition (clusters are represented by colors) of factor levels in terms of model likelihood. Merging procedure is described in [3].

4. Single variable explanations

Single variable explainers are interpolating the conditional effect of a single variable.

We can use Partial Dependence Plot (PDP) to compare two or more models. Below we plot PDP for the linear model against the random forest model. Not surprisingly random forest captures the non-linear relation that cannot be captured by linear models.

5. Conclusions

DALEX is a set of model-agnostic procedures for model validation, explanation and improvement. It provides a methodology of visualizing complicated relations in a simplified, easy to understand way. DALEX’s documentation may be found on Github: https://github.com/pbiecek/DALEX.

6. References

