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Course Outline

I Introduction: Positive definite kernels and RKHS (Lecture 1)

I Feature space vs. Function space

I Kernel trick

I Applications: Ridge regression, Principal component analysis

I Generalization of kernel trick to probabilities (Lecture 2)

I Hilbert space embedding of probabilities

I Mean element and covariance operator

I Applications: Two-sample testing, GAN

I Approximate Kernel Methods (Lecture 3)

I Computational vs. Statistical trade-off

I Applications: Ridge regression, Principal component analysis



Lecture-1 Outline

I Motivating Examples

I Nonlinear classification

I Statistical learning

I Feature space vs. Function space

I Kernels and properties

I RKHS and properties

I Applications: Ridge regression, Principal component analysis

I Kernel trick

I Representer theorem



Motivating Example: Binary Classification

I Given: D := {(xj , yj)}nj=1, xj ∈ X , yj ∈ {−1,+1}

I Goal: Learn a function f : X → R such that

yj = sign(f (xj)), ∀ j = 1, . . . , n.



Linear Classifiers

I Linear classifier: fw ,b(x) = 〈w , x〉2 + b, w , x ∈ Rd , b ∈ R

I Find w ∈ Rd and b ∈ R such that

yj (〈w , xj〉2 + b) ≥ 0, ∀ j = 1, . . . , n.

I Fisher discriminant analysis, Support vector machine, Perceptron, ...



Nonlinear Classification: 1

I There is no linear classifier that separates red and blue regions.



Nonlinear Classification: 1

I There is no linear classifier that separates red and blue regions.

I However, the following function perfectly separates red and blue
regions

f (x) = x2 − r =

〈
(1,−r)︸ ︷︷ ︸

w

, (x2, 1)︸ ︷︷ ︸
Φ(x)

〉
2

, a < r < b.

I By mapping x ∈ R to Φ(x) = (x2, 1) ∈ R2, the nonlinear
classification problem is turned into a linear problem.

I We call Φ as the feature map (starting point of kernel trick)
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Nonlinear Classification: 2

I There is no linear classifier that separates red and blue regions.



Nonlinear Classification: 2

I There is no linear classifier that separates red and blue regions.

I A conic section, however, perfectly separates them

f (x) = ax2
1 + bx1x2 + cx2

2 + dx1 + ex2 + g

=

〈
(a, b, c , d , e, g)︸ ︷︷ ︸

w

, (x2
1 , x1x2, x

2
2 , x1, x2, 1)︸ ︷︷ ︸

Φ(x)

〉
2

.

I Φ(x) ∈ R6.



Motivating Example: Statistical Learning

I Given: A set D := {(x1, y1), . . . , (xn, yn)} of input/output pairs
drawn independently from an unknown probability distribution P on
X × Y .

I Goal: “Learn” a function f : X → Y such that f (x) is a good
approximation of the possible response y for an arbitrary x .

I We need a means to assess the quality of an estimated response
f (x) when the true input and output pair is (x , y).

I Loss function: L : Y × Y → [0,∞)

I Squared-loss: L(y , f (x)) = (y − f (x))2

I Hinge-loss: L(y , f (x)) = max(0, 1− yf (x))

I One common quality measure is the average loss or expected loss of
f , called the risk functional i.e.,

RL,P(f ) :=

∫
X×Y

L(y , f (x)) dP(x , y).
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Bayes Risk and Bayes Function

I Idea: Choose f that has the smallest risk.

f ∗ := arg inf
f :X→R

RL,P(f ),

where the infimum is taken over the set of all measurable functions.

I f ∗ is called the Bayes function and RL,P(f ∗) is called the Bayes risk.

I If P is known, finding f ∗ is often a relatively easy task and there is
nothing to learn.

I Example: L(y , f (x)) = (y − f (x))2 and L(y , f (x)) = |y − f (x)|
I Exercise: What is f ∗ for the above losses?
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Universal Consistency

I But P is unknown.

I However “partially known” from the training set,
D := {(x1, y1), . . . , (xn, yn)}.

I Given D, the goal is to construct fD : X → R such that

RL,P(fD) ≈ RL,P(f ∗).

I Universally consistent learning algorithm: for all P on X × Y , we
have

RL,P(fD)→ RL,P(f ∗), n→∞

in probability.
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Empirical Risk Minimization

I Since P is unknown but is known through D, it is tempting to
replace RL,P(f ) by

RL,D(f ) :=
1

n

n∑
i=1

L(yi , f (xi )),

called the empirical risk and find fD by

fD := arg min
f :X→R

RL,D(f )

I Is it a good idea?

I No! Choose fD such that fD(x) = yi , x = xi , ∀ i and
fD(x) = 0, otherwise.

I RL,D(fD) = 0 but can be very far from RL,P(f ∗).

Overfitting!!
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Method of Sieves (Structural Risk Minimization)

I How to avoid overfitting: Perform ERM on a small set F of
functions f : X → Y (class of smooth functions) where the size of F
grows appropriately with n.

I Do minimization over F:

fD := arg inf
f∈F
RL,D(f )

I Total error: Define R∗L,P,F := inf f∈FRL,P(f )

RL,P(fD)−R∗L,P =

Estimation error︷ ︸︸ ︷
RL,P(fD)−R∗L,P,F

+

Approximation error︷ ︸︸ ︷
R∗L,P,F −R∗L,P



Approximation and Estimation Errors

Approximation

       error

Estimation

      error



How to choose F?

fD = arg inf
f∈F
RL,D(f ) = arg inf

f∈F

1

n

n∑
i=1

L(yi , f (xi )︸︷︷︸
δxi (f )

)

I An evaluation functional is a linear functional δx that evaluates each
function in the space at the point x , i.e.,

δx(f ) = f (x), ∀ f ∈ F.

I Bounded evaluation functional: An evaluation functional is bounded
if there exists a M such that

|δx(f )| = |f (x)| ≤ Mx‖f ‖F, ∀ x ,∈ X , f ∈ F

where F is a normed vector space (continuity of δx).

I Evaluation functionals are not always bounded.

I Example: L2[a, b]

I ‖f ‖2 remains the same if f is changed at a countable set of points.



Choice of F

I Various choices for F (with evaluation functional bounded):

I Lipschitz functions

I Bounded Lipschitz functions

I Bounded continuous functions

I If F is a Hilbert space of functions with bounded evaluation
functionals for all x ∈ X , computationally efficient estimators can be
obtained.

Reproducing Kernel Hilbert Space
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Summary

Points of view:

I Feature map, Φ: trick to achieve non-linear methods from linear ones

I Function space, F: statistical generalization and computational
efficiency



History

I Mathematics (Functional analysis): Introduced in 1907 by Stanis law Zaremba for
studying boundary value problems; developed by Mercer, Szegö, Bergman,
Bochner, Moore, Aronszajn; reached maturity by late 1950’s.

I Statistics: Started by Emmanuel Parzen (early 1960’s) and pursued by Wahba
(between 1970 and 1990).

I Pattern recognition/Machine learning: Started by Aizerman, Braverman and
Rozonoer (1964) but fury of activity following the work of Boser, Guyon and
Vapnik (1992).

Other areas: Signal processing, control, probability theory, stochastic processes,

numerical analysis



Kernels
(Feature space view point)



Hilbert Space
Inner product: Let H be a vector space over R. A map
〈·, ·〉H : H×H → R is an inner product on H if

I Linear in the first argument: for any f1, f2, g ∈ H and α, β ∈ R

〈αf1 + βf2, g〉H = α〈f1, g〉H + β〈f2, g〉H;

I Symmetric: for any f , g ∈ H,

〈f , g〉H = 〈g , f 〉H;

I Positive definiteness: for any f ∈ H,

〈f , f 〉H ≥ 0 and 〈f , f 〉H = 0⇔ f = 0.

Define ‖ · ‖H := 〈·, ·〉H as the norm on H induced by the inner product.

A complete (by adding the limits of all Cauchy sequences w.r.t. ‖ · ‖H) inner product

space is defined as a Hilbert space.

Measure of similarity
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Kernel

(Steinwart and Christmann, 2008)

Throughout, we assume that X is a non-empty set (input space)

Kernel: A function k : X × X → R is called a kernel if there exists a
Hilbert space H and a map Φ : X → H such that

k(x , x ′) := 〈Φ(x),Φ(x ′)〉H, ∀ x , x ′ ∈ H.

Φ: Feature map and H: Feature space

Non-uniqueness of Φ and H: Suppose k(x , x ′) = xx ′, x , x ′ ∈ R. Then

Φ1(x) = x and Φ2(x) =
1

2
(x , x)

are feature maps with corresponding feature spaces being R and R2.
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Properties

I For any α > 0, αk is a kernel.

αk(x , x ′) = α〈Φ(x),Φ(x ′)〉H = 〈
√
αΦ(x),

√
αΦ(x ′)〉H.

I Conic sum of kernels is a kernel: If (ki )
m
i=1 is a collection of kernels,

then for any (αi )
m
i=1 ⊂ R+,

∑m
i=1 αiki is a kernel.

m∑
i=1

αiki (x , x
′) =

m∑
i=1

αi 〈Φi (x),Φi (x
′)〉Hi

=
m∑
i=1

〈
√
αiΦi (x),

√
αiΦi (x

′)〉Hi

= 〈Φ̃(x), Φ̃(x ′)〉H̃
for all x , x ′ ∈ X where

Φ̃(x) = (
√
α1Φ1(x), . . . ,

√
αmΦm(x)) and H̃ = H1 ⊕ . . .⊕Hm︸ ︷︷ ︸

direct sum

.

(R⊕ R = R2)
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Properties

I Difference of kernels is NOT a kernel:

I Suppose ∃ x ∈ X such that k1(x , x)− k2(x , x) < 0.

I If k1 − k2 is a kernel, then ∃Φ and H such that for all x , x ′ ∈ H,

k1(x , x ′)− k2(x , x ′) = 〈Φ(x),Φ(x ′)〉H.

I Choose x = x ′.

I Product of kernels is a kernel: If k1 and k2 are kernels, then k1 · k2 is
a kernel.

k((x1, x2), (x ′1, x
′
2)) = k1(x1, x

′
1) · k2(x2, x

′
2)

= 〈Φ1(x1),Φ1(x ′1)〉H1 · 〈Φ2(x2),Φ2(x ′2)〉H2

= 〈Φ1(x1)⊗ Φ2(x2),Φ1(x ′1)⊗ Φ2(x ′2)〉H1⊗H2

where ⊗ denotes the tensor product.
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Properties

I Suppose k1 is defined on {0, 1} and k2 is defined on {A,B,C}.
Then clearly k1 · k2 is defined on {0, 1} × {A,B,C}.

I Suppose for simplicity, we assume H1 = R2 and H2 = R5. Then

k1(x1, x
′
1) · k2(x2, x

′
2) = 〈Φ1(x1),Φ1(x ′1)〉R2 · 〈Φ2(x2),Φ2(x ′2)〉R5

= Φ>1 (x ′1)Φ1(x1)Φ>2 (x2)Φ2(x ′2)

= Tr

Φ2(x ′2)Φ>1 (x ′1)︸ ︷︷ ︸
R2→R5

Φ1(x1)Φ>2 (x2)︸ ︷︷ ︸
R5→R2


=
〈
Φ1(x1)Φ>2 (x2),Φ1(x ′1)Φ>2 (x ′2)

〉
R2⊗R5

=: 〈Φ1(x1)⊗ Φ2(x2),Φ1(x ′1)⊗ Φ2(x ′2)〉R2⊗R5

where R2 ⊗ R5 is the space of 2× 5 matrices.
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Properties

I For any arbitrary function f : X → R,

k̃(x , x ′) = f (x)k(x , x ′)f (x ′) (1)

is a kernel.

k̃(x , x ′) = f (x)k(x , x ′)f (x ′) = f (x)〈Φ(x),Φ(x ′)〉Hf (x ′)

= 〈f (x)Φ(x)︸ ︷︷ ︸
Φf (x)

, f (x ′)Φ(x ′)︸ ︷︷ ︸
Φf (x′)

〉H.

I k(x , x) ≥ 0: k(x , x) = 〈Φ(x),Φ(x)〉H = ‖Φ(x)‖2
H ≥ 0.

I Cauchy-Schwartz: |k(x , y)| ≤
√

k(x , x)
√

k(x ′, x ′)

|k(x , x ′)| = |〈Φ(x),Φ(x ′)〉H| ≤ ‖Φ(x)‖H‖Φ(x ′)‖H.
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Φf (x)
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Φf (x′)

〉H.

I k(x , x) ≥ 0: k(x , x) = 〈Φ(x),Φ(x)〉H = ‖Φ(x)‖2
H ≥ 0.

I Cauchy-Schwartz: |k(x , y)| ≤
√

k(x , x)
√

k(x ′, x ′)

|k(x , x ′)| = |〈Φ(x),Φ(x ′)〉H| ≤ ‖Φ(x)‖H‖Φ(x ′)‖H.



Properties

I Infinite dimensional feature map:

k(x , x ′) =
∑
i∈I

φi (x)φi (x
′) is a kernel

if ‖(φi (x))i‖2
`2(I ) :=

∑
i∈I φ

2
i (x) <∞ for all x ∈ X .

I Proof:
k(x , x ′) = 〈Φ(x),Φ(x ′)〉H

where Φ(x) = (φi (x))i∈I and H = `2(I ), which is the space of
square summable sequences on I .

If I is countable, then Φ(x) is infinite dimensional.
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Examples
I Polynomial kernel: k(x , x ′) = (c + 〈x , x ′〉2)

m
, x , x ′ ∈ Rd for c ≥ 0

and m ∈ N. Use binomial theorem to expand, apply sum and

product rules.

I Linear kernel: c = 0 and m = 1.

I Exponential kernel: k(x , x ′) = exp(〈x , x ′〉2), x , x ′ ∈ Rd .

Use Taylor series expansion,

k(x , x ′) = exp(〈x , x ′〉2) =
∞∑
i=0

〈x , x ′〉i2
i !

.

I Gaussian kernel: k(x , x ′) = exp
(
−‖x−x

′‖2
2

γ2

)
, x , x ′ ∈ Rd . Note that

k(x , x ′) = exp

(
−‖x − x ′‖2

2

γ2

)
=

exp
(
−2 〈x,x

′〉2
γ2

)
exp

(
−‖x‖

2
2

γ2

)
exp

(
−‖x

′‖2
2

γ2

)
and apply (1).
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Positive Definiteness

I Kernels are symmetric and positive definite: EASY

I Symmetry: k(x , x ′) = 〈Φ(x),Φ(x ′)〉H = 〈Φ(x ′),Φ(x)〉H = k(x ′, x)

I Positive definiteness:

n∑
i=1

n∑
j=1

αiαjk(xi , xj) =
n∑

i=1

n∑
j=1

αiαj〈Φ(x),Φ(x ′)〉H =

∥∥∥∥∥
n∑

i=1

αiΦ(xi )

∥∥∥∥∥
2

H

≥ 0.

I Symmetric and positive definite functions are kernels: NOT
OBVIOUS

The proof is based on the construction of a reproducing kernel
Hilbert space.

In general, checking for positive definiteness is also NOT easy.
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Positive Definiteness: Translation Invariant Kernels
Let X = Rd . A kernel k : X × X → Rd is said to be translation invariant if

k(x , y) = ψ(x − y), x , y ∈ Rd ,

where ψ is a positive definite function on Rd .

I Bochner’s theorem provides a complete characterization for the
positive definiteness of ψ.

I A continuous function ψ : Rd → R is positive definite if and only if
ψ is the Fourier transform of a finite non-negative Borel measure Λ,
i.e.,

ψ(x) =

∫
Rd

e
√
−1〈x,ω〉2 dΛ(ω)︸ ︷︷ ︸

Characteristic function of Λ

.

Given a continuous integrable function ψ, i.e.,
∫
Rd |ψ(x)| dx <∞, compute

ψ̂(ω) =
1

(2π)d

∫
Rd

e−
√
−1〈ω,x〉2 ψ(x) dx .

If ψ̂(ω) is non-negative for all ω ∈ Rd , then ψ is positive definite and
k(x , x ′) = ψ(x − x ′) is a kernel.
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Exercise

I Show that
ψ(x) = (1− |x |)1[−1,1](x), x ∈ R

is positive definite.

I Show that

ψ(x) =
1

2
(2− |x |)21{(2−|x|)∈[0,1]} +

(
1− x2

2

)
1[−1,1](x), x ∈ R

is NOT positive definite.



So far...

Kernels ⇔ Symmetric and positive definite functions



Reproducing Kernel Hilbert Space
(Function space view point)



Reproducing Kernel Hilbert Space
I A Hilbert space H of real-valued functions on X is said to be a

reproducing kernel Hilbert space (RKHS) with k : X × X → R as
the reproducing kernel, if

I ∀ x ∈ X , k(·, x) ∈ H;

I ∀x ∈ X , ∀ f ∈ H, 〈f , k(·, x)〉H = f (x).

I The reproducing kernel (r.k.) k of H is a kernel:

k(x , x ′) =

〈
k(·, x)︸ ︷︷ ︸

Φ(x)

, k(·, x ′)︸ ︷︷ ︸
Φ(x′)

〉
H

, x , x ′ ∈ X .

We refer to Φ(x) = k(·, x) as the canonical feature map.

I Every r.k. is a symmetric and positive definite function.

I The evaluation functional is bounded:

|δx(f )| = |f (x)| = |〈f , k(·, x)〉H| ≤ ‖k(·, x)‖H‖f ‖H
=
√

k(x , x)‖f ‖H, ∀ x ∈ X , f ∈ H.
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Reproducing Kernel Hilbert Space

I Every Hilbert function space with a reproducing kernel is an RKHS.

I The converse is true: Every RKHS has a unique reproducing kernel.

I (Moore-Aronszajn Theorem)

If k is a positive definite kernel, then there exists a unique RKHS with k as the

reproducing kernel.

(Proof: Define H = {f : f =
∑n

i=1 αik(·, xi ), αi ∈ R, xi ∈ X} endowed with the
bilinear form

〈f , g〉H =
n∑

i,j=1

αiβjk(xi , xj ).

Verify that 〈·, ·〉H is an inner product and 〈f , k(·, x)〉H = f (x) for any f ∈ H.

Complete H to obtain an RKHS.)

Kernels ⇔ Positive definite & symmetric functions ⇔ RKHS
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Functions in the RKHS

I H = span{k(·, x) : x ∈ X} (linear span of kernel functions)

I Example: f (x) =
∑m

i=1 αik(x , xi ) for arbitrary m ∈ N, {αi} ⊂ R,
x ∈ X and {xi} ⊂ X .

k(x , y) = e−‖x−y‖
2/2σ2
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Picture credit: A. Gretton



Properties of RKHS

I k is bounded if and only every f ∈ H is bounded.

I If
∫
X

√
k(x , x) dµ(x) <∞, then for every f ∈ H,∫

X f (x) dµ(x) <∞.

I Every f ∈ H is continuous if and only if k(·, x) is continuous for all
x ∈ X .

I Every f ∈ H is m-times continuously differentiable if k is m-times
continuously differentiable.

k controls the properties of H



Explicit Realization of RKHS

I X = Rd and k(x , y) = ψ(x − y) where ψ is a positive definite
function.

I Assume ψ satisfies
∫
Rd |ψ(x)| dx <∞. Denote ψ̂ to be the Fourier

transform of ψ.

I Define L2(Rd) := {f :
∫
Rd |f (x)|2 dx <∞}. Then

H =

{
f ∈ L2(Rd)

∣∣∣ ∫
Rd

|f̂ (ω)|2

ψ̂(ω)
dω <∞

}

endowed with

〈f , g〉H = (2π)−d/2

∫
f̂ (ω)ĝ(ω)

ψ̂(ω)
dω

is an RKHS with k as the r.k.

(Wendland, 2005)



Fourier Transform



Fourier Transform

F→

F→



Fourier Transform

F→

F→

↘

↗

Smooth function

m

Fast rate of decay of
Fourier transform



Gaussian RKHS

I Gaussian kernel:

k(x , y) = ψ(x − y) = e−‖x−y‖
2
2/γ

2

, x , y ∈ Rd

I Fourier transform:

ψ̂(ω) =

(
γ2

2

)d/2

e−
γ2‖ω‖2

2
4 , ω ∈ Rd

I

Hγ(Rd) :=

f ∈ L2(Rd) :

∫
Rd

|f̂ (ω)|2e
γ2‖ω‖2

2
4 dω︸ ︷︷ ︸

‖f ‖2
Hγ

<∞



Fast decay of ψ̂ ⇒ Smooth H
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2
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∫
Rd

|f̂ (ω)|2e
γ2‖ω‖2

2
4 dω︸ ︷︷ ︸

‖f ‖2
Hγ

<∞


I {f : ‖f ‖Hγ

≤ α} ⊂ {f : ‖f ‖Hγ
≤ β} ⊂ Hγ for any α < β.

More smoothness



Sobolev RKHS
I Laplacian kernel:

k(x , y) = ψ(x − y) =

√
π

2
e−|x−y |, x , y ∈ R

I Fourier transform:

ψ̂(ω) =
1

1 + |ω|2
, ω ∈ R

I

H2
1(R) :=


f ∈ L2(R) :

∫
R
|f̂ (ω)|2(1 + |ω|2) dω︸ ︷︷ ︸

‖f ‖2

H2
1

<∞


I {f : ‖f ‖H2

1
≤ α} ⊂ {f : ‖f ‖H2

1
≤ β} ⊂ H2

1 for any α < β.

Extension to Rd : Matérn Kernel



Summing Up

I Kernels: Feature map Φ and feature space H

I Positive definiteness and Bochner’s theorem

I RKHS: Canonical feature map Φ(x) = k(·, x)

I Kernels ⇔ Positive definite & symmetric functions ⇔
RKHS

I Properties of k control the properties of the RKHS.

I Smoothness



Application: Ridge Regression
(Kernel Trick: Feature map point of view)



Ridge regression
I Given: {(xi , yi )}ni=1 where xi ∈ Rd , yi ∈ R
I Task: Find a linear regressor f = 〈w , ·〉2 s.t. f (xi ) ≈ yi ,

min
w∈Rd

1

n

n∑
i=1

(〈w , xi 〉2 − yi )
2 + λ‖w‖2

2 (λ > 0)

I Solution: For X := (x1, . . . , xn) ∈ Rd×n and
y := (y1, . . . , yn)> ∈ Rn,

w =
1

n

(
1

n
XX> + λId

)−1

Xy︸ ︷︷ ︸
primal

I Easy: (
1

n
XX> + λId

)
X = X

(
1

n
X>X + λIn

)

w =
1

n
X

(
1

n
X>X + λIn

)−1

y︸ ︷︷ ︸
dual
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1

n
X>X + λIn

)−1
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Ridge regression

I Prediction: Given t ∈ Rd

f (t) = 〈w , t〉2 = y>X>
(
XX> + nλId

)−1
t

= y>
(
X>X + nλIn

)−1
X>t

I How does X>X look like?

X>X =


〈x1, x1〉2 〈x1, x2〉2 · · · 〈x1, xn〉2
〈x2, x1〉1 〈x2, x2〉2 · · · 〈x2, xn〉2

... 〈xi , xj〉2
. . .

...
〈xn, x1〉1 〈xn, x2〉2 · · · 〈xn, xn〉2


︸ ︷︷ ︸

Matrix of inner products: Gram Matrix



Ridge regression

I Prediction: Given t ∈ Rd

f (t) = 〈w , t〉2 = y>X>
(
XX> + nλId

)−1
t

= y>
(
X>X + nλIn

)−1
X>t

I How does X>X look like?

X>X =


〈x1, x1〉2 〈x1, x2〉2 · · · 〈x1, xn〉2
〈x2, x1〉1 〈x2, x2〉2 · · · 〈x2, xn〉2

... 〈xi , xj〉2
. . .

...
〈xn, x1〉1 〈xn, x2〉2 · · · 〈xn, xn〉2


︸ ︷︷ ︸

Matrix of inner products: Gram Matrix



Kernel Ridge regression: Feature Map and Kernel Trick

I Given: {(xi , yi )}ni=1 where xi ∈ X , yi ∈ R
I Task: Find a regressor f ∈ H (some feature space) s.t. f (xi ) ≈ yi .
I Idea: Map xi to Φ(xi ) and do linear regression,

min
f∈H

1

n

n∑
i=1

(〈f ,Φ(xi )〉H − yi )
2 + λ‖f ‖2

H (λ > 0)

I Solution: For Φ(X) := (Φ(x1), . . . ,Φ(xn)) ∈ Rdim(H)×n and
y := (y1, . . . , yn)> ∈ Rn,

f =
1

n

(
1

n
Φ(X)Φ(X)> + λIdim(H)

)−1

Φ(X)y︸ ︷︷ ︸
primal

=
1

n
Φ(X)

(
1

n
Φ(X)>Φ(X) + λIn

)−1

y︸ ︷︷ ︸
dual
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Kernel Ridge regression: Feature Map and Kernel Trick
I Prediction: Given t ∈ X

f (t) = 〈f ,Φ(t)〉H =
1

n
y>Φ(X)>

(
1

n
Φ(X)Φ(X)> + λIdim(H)

)−1

Φ(t)

=
1

n
y>
(

1

n
Φ(X)>Φ(X) + λIn

)−1

Φ(X)>Φ(t)

As before

Φ(X)>Φ(X) =


〈Φ(x1),Φ(x1)〉H · · · 〈Φ(x1),Φ(xn)〉H
〈Φ(x2),Φ(x1)〉H · · · 〈Φ(x2),Φ(xn)〉H

...
. . .

...
〈Φ(xn),Φ(x1)〉H · · · 〈Φ(xn),Φ(xn)〉H


︸ ︷︷ ︸

k(xi ,xj )=〈Φ(xi ),Φ(xj )〉H

and

Φ(X)>Φ(t) = [〈Φ(x1),Φ(t)〉H, . . . , 〈Φ(xn),Φ(t)〉H]>
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Feature Map and Kernel Trick: Remarks

I The primal formulation requires the knowledge of feature map Φ
(and of course H) and these could be infinite dimensional.

I Suppose we have access to a kernel function, k (Recall: not easy to
verify that k is a kernel). Then the dual formulation is entirely
determined by k (Gram matrix or kernel matrix).

I Linear regression in the dual uses a linear kernel.

Kernel trick or heuristic

Replace 〈xi , xj 〉2 in your linear method by k(xi , xj ) where k is your favorite kernel



Application: Principal Component Analysis
(Kernel Trick: Feature map point of view)



Principal Component Analysis

I Dimensionality reduction
I Given: {(xi )}ni=1 where xi ∈ Rd

I Task: Find a low-dimensional representation for (xi ).

max
‖w‖2=1

Var (〈w , x1〉2, 〈w , x2〉2, . . . , 〈w , xn〉2)

≡ max
‖w‖1=1

1

n

n∑
i=1

〈w , xi 〉22 −

(
1

n

n∑
i=1

〈w , xi 〉2

)2

≡ max
‖w‖1=1

w>Σ̂w

where

Σ̂ :=
1

n

n∑
i=1

xix
>
i −

(
1

n

n∑
i=1

xi

)(
1

n

n∑
i=1

xi

)>
=

1

n
X

(
Id −

1

n
11>

)
X> =: XHX>.



Principal Component Analysis

I Dimensionality reduction
I Given: {(xi )}ni=1 where xi ∈ Rd

I Task: Find a low-dimensional representation for (xi ).

max
‖w‖2=1

Var (〈w , x1〉2, 〈w , x2〉2, . . . , 〈w , xn〉2)

≡ max
‖w‖1=1

1

n

n∑
i=1

〈w , xi 〉22 −

(
1

n

n∑
i=1

〈w , xi 〉2

)2

≡ max
‖w‖1=1

w>Σ̂w

where

Σ̂ :=
1

n

n∑
i=1

xix
>
i −

(
1

n

n∑
i=1

xi

)(
1

n

n∑
i=1

xi

)>
=

1

n
X

(
Id −

1

n
11>

)
X> =: XHX>.



Principal Component Analysis

I Dimensionality reduction
I Given: {(xi )}ni=1 where xi ∈ Rd

I Task: Find a low-dimensional representation for (xi ).

max
‖w‖2=1

Var (〈w , x1〉2, 〈w , x2〉2, . . . , 〈w , xn〉2)

≡ max
‖w‖1=1

1

n

n∑
i=1

〈w , xi 〉22 −

(
1

n

n∑
i=1

〈w , xi 〉2

)2

≡ max
‖w‖1=1

w>Σ̂w

where

Σ̂ :=
1

n

n∑
i=1

xix
>
i −

(
1

n

n∑
i=1

xi

)(
1

n

n∑
i=1

xi

)>
=

1

n
X

(
Id −

1

n
11>

)
X> =: XHX>.



Principal Component Analysis
I Solution: Find the eigenvector corresponding to the maximum

eigenvalue of Σ̂,

Σ̂w = λ1w

XHX>w = λ1w

X>X︸ ︷︷ ︸
K

H X>w︸ ︷︷ ︸
α

= λ1 X>w

KHα = λ1α

I The eigenvalues of KH are the same as that of Σ̂

I
α = X>w =⇒ XHα = XHX>w = Σ̂w = λ1w

The eigenvector of Σ̂ can be computed from the eigenvector of KH
as

w =
1

λ1
XHα

I Kernel PCA (Schölkopf et al., 1998):

w =
1

λ1
Φ(X)Hα =

n∑
i=1

(Hα)iΦ(xi )
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Feature Map and Kernel Trick

Same idea yields: (Schölkopf and Smola, 2002)

I Linear SVM → Kernel SVM

I Fisher discriminant analysis (FDA) → Kernel FDA

I Canonical correlation analysis (CCA) → Kernel CCA

many more ...



Revisiting Nonlinear Classification: 1

I The following function perfectly separates red and blue regions

f (x) = x2 − r =

〈
(1,−r)︸ ︷︷ ︸

w

, (x2, 1)︸ ︷︷ ︸
Φ(x)

〉
2

, a < r < b.

I Apply kernel trick with k(x , y) = x2y2 + 1.



Revisiting Nonlinear Classification: 2

I A conic section, however, perfectly separates them

f (x1, x2) = ax2
1 + bx1x2 + cx2

2 + dx1 + ex2 + g

=

〈
(a, b, c , d , e, g)︸ ︷︷ ︸

w

, (x2
1 , x1x2, x

2
2 , x1, x2, 1)︸ ︷︷ ︸

Φ(x)

〉
2

.

I Apply kernel trick with k(x , y). Exercise: Find the kernel k(x , y).



Application: Ridge Regression
(Representer Theorem: Function space point of view)



Learning Theory: Revisit

I Empirical risk: RL,D(f ) := 1
n

∑n
i=1 L(yi , f (xi ))

fD := arg min
f :X→R

RL,D(f )

I To avoid overfitting: Perform ERM on a small set F of functions
(class of smooth functions)

fD := arg inf
f∈F
RL,D(f )

I Choice of F : Evaluation functionals are bounded.

|δx(f )| = |f (x)| ≤ Mx‖f ‖F, ∀ x ∈ X , f ∈ F

Pick F = {f : ‖f ‖H ≤ α}; H is an RKHS

Classification with Lipschitz functions (von Luxburg and Bousquet, JMLR 2004)



Penalized Estimation

I We have

fD = arg inf
‖f ‖H≤α

RL,D(f )

= arg inf
‖f ‖H≤α

1

n

n∑
i=1

L(yi , f (xi ))

I In the Lagrangian formulation, we have

fD=arg inf
f∈H

RL,D(f ) + λ ‖f ‖2
H

=arg inf
f∈H

1

n

n∑
i=1

L(yi , f (xi )) + λ ‖f ‖2
H

where λ > 0.

Optimization over (possibly infinite dimensional) function space



Representer Theorem

Consider the penalized estimation problem,

inf
f∈H

1

n

n∑
i=1

L(yi , f (xi )) + λθ(‖f ‖H)

where θ : [0,∞)→ R is a non-decreasing function.

I (Kimeldorf and Wahba, 1971; Schölkopf et al., ALT 2001) The solution to
the above minimization problem is achieved by a function of the
form

f =
n∑

i=1

αik(·, xi ),

where (αi )
n
i=1 ⊂ R.

The infinite dimensional optimization problem reduces to a finite
dimensional optimization problem in Rn.



Proof
I Decomposition:

H = H0 ⊕H⊥0 ,

where H0 = span{k(·, x1), . . . , k(·, xn)}, H⊥0 : orthogonal
complement. Decompose

f = f0 + f ⊥

accordingly.

I The loss function L does not change by replacing f with f0 because

f (xi ) = 〈f , k(·, xi )〉H = 〈f0, k(·, xi )〉H + 〈f ⊥, k(·, xi )〉H︸ ︷︷ ︸
=0

.

I Penalty term:

‖f0‖H ≤ ‖f ‖H ⇒ θ(‖f0‖H) ≤ θ(‖f ‖H).

I Thus the optimum lies in H0.



Kernel Ridge Regression

I f : X → R and L(y , f (x)) = (y − f (x))2 (Squared loss)

inf
f∈H

1

n

n∑
i=1

(yi − 〈f , k(·, xi )〉H)2 + λ‖f ‖2
H

I By representer theorem, the solution is of the form
f =

∑n
i=1 αik(·, xi ) which on substitution yields

inf
α

1

n
‖Y −Kα‖2 + λα>Kα

where K is the Gram matrix with Kij = k(xi , xj).

I Solution: α̂ = (K + nλIn)−1Y (assuming K is invertible). For any
t ∈ X ,

f̂ (t) =
n∑

i=1

α̂ik(t, xi ) = Y>(K + nλIn)−1kt ,

where (kt)i := k(t, xi ). (Same solution as the feature map view point)
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t ∈ X ,

f̂ (t) =
n∑

i=1

α̂ik(t, xi ) = Y>(K + nλIn)−1kt ,

where (kt)i := k(t, xi ). (Same solution as the feature map view point)



Kernel Ridge Regression

I f : X → R and L(y , f (x)) = (y − f (x))2 (Squared loss)

inf
f∈H

1

n

n∑
i=1

(yi − 〈f , k(·, xi )〉H)2 + λ‖f ‖2
H

I By representer theorem, the solution is of the form
f =

∑n
i=1 αik(·, xi ) which on substitution yields

inf
α

1

n
‖Y −Kα‖2 + λα>Kα

where K is the Gram matrix with Kij = k(xi , xj).

I Solution: α̂ = (K + nλIn)−1Y (assuming K is invertible). For any
t ∈ X ,

f̂ (t) =
n∑

i=1

α̂ik(t, xi ) = Y>(K + nλIn)−1kt ,

where (kt)i := k(t, xi ). (Same solution as the feature map view point)



Application: Principal Component Analysis
(Representer Theorem: Function space point of view)



Principal Component Analysis
I Given: {(xi )}ni=1 where xi ∈ X .

I

min
‖f ‖H=1

Var (f (x1), . . . , f (xn))

= min
‖f ‖H=1

Var (〈f , k(·, x1)〉H, . . . , 〈f , k(·, xn)〉H)

= min
‖f ‖H=1

1

n

n∑
i=1

〈f , k(·, xi )〉2H −

〈
f ,

1

n

n∑
i=1

k(·, xi )

〉2

H

= min
‖f ‖H=1

〈f , Σ̂f 〉H

where

Σ̂ :=
1

n

n∑
i=1

k(·, xi )⊗ k(·, xi )−

(
1

n

n∑
i=1

k(·, xi )

)
⊗

(
1

n

n∑
i=1

k(·, xi )

)
is the covariance operator.

I The solution to the above problem is the eigenfunction of Σ̂
corresponding to the maximum eigenvalue. (CAUTION!!)
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Principal Component Analysis (Schölkopf et al., 1998)

I By the representer theorem, the solution to the optimization
problem is of the form

f =
n∑

i=1

αik(·, xi ).

I This yields
min

α>Kα=1
α>KHKα

and therefore α satisfies

KHKα = λ1Kα.

I If K is invertible, then α is an eigenvector to KH (same solution as the
feature map view point)
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How to choose H?



Large RKHS: Universal Kernel/RKHS

I Universal kernel (Steinwart, JMLR 2001): A kernel k on a compact metric

space, X is said to be universal if the RKHS, H is dense (w.r.t. uniform norm) in

the space of continuous functions on X .

Any continous function on X can be approximated arbitrarily by a
function in H.

I (Steinwart and Christmann, 2008) For certain conditions on L, if k is
universal, then

inf
f∈H
RL,P(f ) = RL,P(f ∗),

i.e., approximation error is zero.

I Squared loss, Hinge loss,...
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When is k Universal?

k is universal if and only if∫
X

∫
X
k(x , y) dµ(x) dµ(y) > 0

for all non-zero finite signed measures, µ on X .

(Carmeli et al., 2010; S et al., 2011)

Generalization of strictly positive definite kernels

I In Lecture 2, we will explore more by relating it to the Hilbert space
embedding of measures.

I Examples: Gaussian, Laplacian, etc. (No finite dimensional RKHS is
universal!!)



Advanced Topics

I Consistency and convergence rates of KRR (Caponnetto and De Vito,

2007; Steinwart et al., 2009)

I Consistency and convergence rates of KPCA (Blanchard et al., 2007;

Rudi et al., 2013)

I Spectral regularization

I Stochastic gradient descent methods for KRR
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