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Recap of Lecture 1

Kernel method provides an elegant approach to achieve non-linear
algorithms from linear algorithms.

» Input space, X: the space of observed data on which learning is
performed.

» Feature map, ®: defined through a positive definite kernel function,
k:XxX—>R

x = P(x), xeX

» Constructing linear algorithms in the feature space ®(X) translates
as non-linear algorithms in &

» Elegance: No explicit construction of ® as (®(x), ®(y)) = k(x. y).
» Function space view: RKHS; smoothness and generalization
Examples

» Ridge regression. In fact many more
(Kernel+-SVM/PCA/FDA/CCA/Perceptron/logistic regression, ...)



Outline

» Motivating example: Comparing distributions
» Hilbert space embedding of measures

» Mean element
> Distance on probabilities (MMD)
» Characteristic kernels

» Cross-covariance operator and measure of independence

» Applications

» Two-sample testing

» Choice of kernel



Motivating Example: Coin Toss

» Tossl: THHHT THTTHHTH

» Toss2: HTTHTHTTHHHTT

Are the coins/tosses statistically similar?



Motivating Example: Coin Toss

» Tossl: THHHTTHTTHHTH

» Toss2: HTTHTHTTHHHTT

Are the coins/tosses statistically similar?

Toss 1 is a sample from P:=Bernoulli(p) and Toss 2 is a sample from
Q:=Bernoulli(q).

Is p = q or not?, i.e., compare

Ep[X] = Ao . x dP(x) and Eg[X] = /{0 Y x dQ(x).



Coin Toss Example

In other words, we compare

/ ®(x)dP(x) and / d(x) dQ(x)
R R
where ® is an identity map,
d(x) = x.
A positive definite kernel corresponding to ¢ is
k(x,y) = (®(x), ®(y))2 = xy,

which is a linear kernel on {0,1}. Therefore, comparing two Bernoulli is
equivalent to

[ Krdre L [ k(yx)da)
J{0,1} 0,1}

for all y € {0,1}, i.e., compare the expectations of the kernel.



Comparing two Gaussians

P=N(ui,03)  and Q= N(u2,03)
Comparing P and Q is equivalent to comparing p1, 2 and O’%, O’%, ie.,
Ep[X] = / x dP(x) = / x dQ(x) = Eg[X]
R R
and

Ep[X?] = /R X2 dP(x) = / x2 dQ(x) = Eg[X?].

R



Comparing two Gaussians

P = N(u1,02)  and Q= N(u2,03)

Comparing P and Q is equivalent to comparing p1, 2 and Uf, ag, ie.,

BolX] = [ xdP() 2 [ xdQ(x) = EqlX]

and
Ep[X?] = /R 2 dP(x) /R 2 dO(x) = Eg[X?].
Concisely
/R O(x) dP(x) = /]R ®(x) dQ(x)
where

d(x) = (x,x?).

Compare the first moment of the feature map



Comparing two Gaussians

Using the map @, we can construct a positive definite kernel as
k(x,y) = (®(x), ®(y))re = xy + x°y?

which is a polynomial kernel of order 2.

Therefore, comparing two Gaussians is equivalent to
. ,
[ Kx a2 2 [ Ky da()
JR R

for all y € R, i.e., compare the expectations of the kernel.



Comparing general P and QQ

Moment generating function is defined as

Mp(y) = / e dP(x)
R
and (if it exists) captures the information about a distribution, i.e.,
Mp =My & P=Q.
Choosing

x? X!
Px)=(1,x,—,..., .
0= (10 T U

) € lr(N),Vx e R

it is easy to verify that

k(x,y) = (0(x), (1)) ey = €

and so

[ kx.y)dB() = [ Kixoy) dQ(0), ¥y € R s F= @
JR R



Two-Sample Problem

ii.d.

» Given random samples {Xi,..., X;,} '~ P and
(Y., Yo} " Q.

» Determine: P=QorP#£ Q7

Applications:
> Microarray data (aggregation problem)
» Speaker verification

» Independence Testing: Given random samples
{(X1, Y1), -+, (Xas Ya)} A7 By, Does P, factorize into P,P,?

> Feature selection (microarrays, image and text,...)



Hilbert Space Embedding of Measures



Hilbert Space Embedding of Measures

» Canonical feature map:
d(x) = k(-,x) € H, xeX

where H is a reproducing kernel Hilbert space (RKHS).

» Generalization to probabilities:

x = k(+,x) = Ox — k(- x)
~—~ ——
point mass at x fX k(-,y) d5x(y):]1‘35x [k(-,Y)]

Based on the above, the map is extended to probability measures as
P> up = / (x) dP(x) = / k(- x) dP(x)
X X
—_———
Ex~rk(-,X)

(Smola et al., ALT 2007)



Properties

» up is the mean of the feature map and is called the kernel mean or
mean element of P.

» When is pp well defined?

/ Vv k(x, x) dP(x) < oc > up €H
JX



Properties

» up is the mean of the feature map and is called the kernel mean or
mean element of P.

» When is pp well defined?

/ Vv k(x, x) dP(x) < oc > up €H
Proof:

sl = H/X k(%) dB(x)

Jensen' s
< / k()13 dP()-
H X



Properties

» up is the mean of the feature map and is called the kernel mean or
mean element of P.

» When is pp well defined?

/ Vv k(x, x) dP(x) < oc > up €H

» We know that for any f € H, f(x) = (f, k(-, x))#. So, for any
fen,

/X f(x)dIP’(X):/X(f, k(- x))n d]P’(X)i<f,/X k(-,x)dP(X)>
= (f, pue)n-

H



Interpretation (s et al., JMLR 2010)
Suppose k is translation invariant on R ie.,

k(x,y) =¥(x —y), x,y € R%. Then

pp = / P(- — x) dP(x) = ¢ x P,
Rd

where x is the convolution of ¢ and P.

» Convolution is a smoothing operation = pup is a smoothed version
of P.



Interpretation (s et al., JMLR 2010)

Suppose k is translation invariant on RY, i.e.,
k(x,y) =¥(x —y), x,y € R%. Then

pp = / P(- — x) dP(x) = ¢ x P,
Rd

where x is the convolution of ¢ and P.

» Convolution is a smoothing operation = pup is a smoothed version
of P.

» Example: Suppose P = §,, a point mass at y. Then

pp =P =1(—y).



Interpretation (s et al., JMLR 2010)

Suppose k is translation invariant on RY, ie.,
k(x,y) = ¥(x —y), x,y € R9. Then

wp = /]Rd (- — x) dP(x) = ¢+ P,

where x is the convolution of ¢ and P.

» Convolution is a smoothing operation = up is a smoothed version
of P.

» Example: Suppose ¢ < N(0,02) and P = N(u,72). Then
e =V xPoc N(p, 0% +72).

pp is a wider Gaussian than P



Comparing Kernel Means

Define a distance (maximum mean discrepancy) on probabilities

MMDy (P, Q) = [z — polly
(Gretton et al., NIPS 2006; Smola et al., ALT 2007)

MMD3(P, Q) = (e, 112) 2 + (1o, 1a)r — 2{up, p1o)



Comparing Kernel Means

Define a distance (maximum mean discrepancy) on probabilities

MMDy (P, Q) = [z — polly
(Gretton et al., NIPS 2006; Smola et al., ALT 2007)

MMD3, (P, Q) = (ue, ey + (1o, ta)r — 2{ue, po)u
/X Ji2(x) dP(x) + /X i (x) dQ(x) — 2 /X J12(x) dO(x)



Comparing Kernel Means

Define a distance (maximum mean discrepancy) on probabilities
MMDy, (P, Q) = || e — pally
(Gretton et al., NIPS 2006; Smola et al., ALT 2007)
MMD3(P, Q) = (up, pe)a + (po, pa)n — 2{ue, po)u

- /XNP(X)dP(X)“r‘/X/LQ(X)dQ(X)—Z/XMP(X)C]Q(X)
/X /X k(x,y) dF(x) dP(y) + /X /X k(x, y) dQ(x) dQ(y)



Comparing Kernel Means

Define a distance (maximum mean discrepancy) on probabilities

MMDy, (P, Q) = [[e — nolly
(Gretton et al., NIPS 2006; Smola et al., ALT 2007)
MMD3,(P, Q) = (e, pe)a + (1o, po)n — 2{ue, po)u
= [ 9 d200) + [ e 000~ 2 [ () a2
X X X

/X /X k(x, y) d(x) dP(y) + /X /X k(x,y) dQ(x) dQ(y)
—2 [ [ ke dEe dae)



Comparing Kernel Means

Define a distance (maximum mean discrepancy) on probabilities
MMDy(IP, Q) = ||1p — 110l
(Gretton et al., NIPS 2006; Smola et al., ALT 2007)
MMD3,(P,Q) = (up, pz)n + (1o, po)n — 2{ue, po)n

- /XﬂP(X)dHD(X)-‘r‘/X/LQ(X)dQ(X)—2/X’u,?(x)d(@(x)
/X /X k(x,y) dF(x) dP(y) + /X /X k(x, y) dQ(x) dQ(y)

o /X /X k(x,y) dP(x) dQ(y)
- Erk(X, X') + Eok(Y,Y")
/ —_———

avg. similarity between points from P avg. similarity between points from Q



Comparing Kernel Means

Define a distance (maximum mean discrepancy) on probabilities
MMDy, (P, Q) = || e — pally
(Gretton et al., NIPS 2006; Smola et al., ALT 2007)
MMD3,(P, Q) = (up, p2) 1 + (s pro)n — 2(pz, po)u
= [ 9 d200) + [ e 000~ 2 [ () a2
X X X
| [ s azedroy+ [ [ k) dae da)
X Jx X Jx

2 /X /X K(x, y) dP(x) dQ(y)
= Erk(X, X') + Eok(Y,Y')
—_—— ———

avg. similarity between points from P avg. similarity between points from Q
-2 Eeok(X,Y)
———

avg. similarity between points from [P and Q



Comparing Kernel Means

In the motivating examples, we compare P and Q by comparing

pe) = [ Ky dP0) and po(n) = [ Ky dQ(x), Vy € .



Comparing Kernel Means

In the motivating examples, we compare P and Q by comparing

pe) = [ Ky dP0) and po(n) = [ Ky dQ(x), Vy € .

For any f € H,

[flloc = sup [f(y)| = sup [{f, k(-, ¥))n| < sup V/k(y,y)lIfll2-
yeX yEX yeEX




Comparing Kernel Means

In the motivating examples, we compare P and Q by comparing

pe) = [ Ky dP0) and po(n) = [ Ky dQ(x), Vy € .

For any f € H,

[flloc = sup [f(y)| = sup [{f, k(-, ¥))n| < sup V/k(y,y)lIfll2-
yeX yEX yeEX

lur — polloe < sup k(y, y)llpe — pglls.
yeE

Does ||up — pglly = 0= P = Q7 (More on this later)



Integral Probability Metric

The integral probability metric between [P and Q is defined as

IPM(P,Q, J) := fsEJF;’ ‘/X f(x) dP(x) — /X f(x) dQ(x)
= sup [E=/(X) — Eof (X)].

(Miiller, 1997)

» J controls the degree of distinguishability between P and Q.

> Related to the Bayes risk of a certain classification problem (S et al.,
NIPS 2009; EJS 2012)



Integral Probability Metric

The integral probability metric between [P and Q is defined as

IPM(P,Q, J) := fsEJF;’ ‘/X f(x) dP(x) — /X f(x) dQ(x)
= sup [E=/(X) — Eof (X)].

(Miiller, 1997)

» J controls the degree of distinguishability between P and Q.

> Related to the Bayes risk of a certain classification problem (S et al.,
NIPS 2009; EJS 2012)

» Example: Suppose ¥ ={a-x, x € R : a€[-1,1]}. Then

IPM(P,Q,7) = sup |2 /Rde(x)f/Rde(x)

ac[—-1,1]




Integral Probability Metric

Example: Suppose 7 = {a-x+b-x?, x €R : 2> + b> = 1}. Then

a/Rxd(]P—Q)+b/Rx2d(P—Q)'

1

IPM(P,Q,7) = sup
a’+b2=1

_ [(/ﬂ{{xd(PQ)>2+ (/szd(P@))T-

How? Exercisel!

» The richer the 7 is, the finer is the resolvability of P and Q.

We will explore the relation of MMDy,(P, Q) to IPM(P,Q, 7).



Integral Probability Metric

IPM(P,Q, J) := sup

fed

| a0 = [ rdat




Integral Probability Metric

IPM(P,Q, J) := sup

fedF

| a0 = [ rdat

Classical results:

F = unit Lipschitz ball (Wasserstein distance) (Dudley, 2002)

>
» J = unit bounded-Lipschitz ball (Dudley metric) (Dudley, 2002)
> T = {L(_ooq: t € RI} (Kolmogorov metric) (Miiller, 1997)

>

J = unit ball in bounded measurable functions (Total variation distance)
(Dudley, 2002)

For all these 7, IPM(P,Q,7) =0=P = Q.




Integral Probability Metric

IPM(P,Q, J) := sup

feg

| a0 = [ rdat

(Gretton et al., NIPS 2006, JMLR 2012; S et al., COLT 2008): J = unit ball in an
RKHS, H with bounded kernel, k. Then

MMDs(P,Q) = IPM(P,Q, 7).

Proof: [ F(x)d(P — Q)(x) = (f, ue — po)a < Ifllellie — polln



Two-Sample Problem

» Given random samples {X1,..., X;y} "I P and
i.id.
{Yi,..., Y} = Q.

» Determine: P=QorP#Q7



Two-Sample Problem

» Given random samples {Xi,..., X;,} "I P and
iid.
{Yi,...,Yn} = Q.

» Determine: P=QorP#Q7

» Approach: Define p to be a distance on probabilities

Ho:P=Q  Ho:p(P,Q) =0

H:P#£Q Hy : p(P,Q) >0



Two-Sample Problem

i.d.d.

» Given random samples {Xi,..., X} "~ P and
iid.
{Yi,...,Yn} = Q.

» Determine: P=QorP#Q7

» Approach: Define p to be a distance on probabilities

Ho:P=Q  Ho:p(P,Q) =0

H:P#£Q Hy : p(P,Q) >0

> If empirical p is
» far from zero: reject Hop

» close to zero: accept Hp



Why MMD;,?

> Related to the estimation of IPM(P,Q, 7).

» Recall

2
MMD3,(P, Q) =

/Xk(.,x)dp(x)_/Xk(-,x)dQ(x)

H



Why MMD;,?

> Related to the estimation of IPM(P,Q, 7).

» Recall
2

MMD2, (P, Q) = \

/Xk(.,x)dp(x)_/Xk(-,x)d@(x)

H

> A trivial approximation: Pp, := LN O0x and Q, =137 6y,
where §, represents the Dirac measure at x.

MMD’H(Pma Qn -

n 2
Zk —%Zk(m-)
D S ICR ORI P ) =23 KX Y)

ij=1 ij=1

V-statistic; biased estimator of MMD?_{



Why MMD;,?

» IPM(P,,,Q,, ) is obtained by solving a linear program for J =
Lipschitz and bounded Lipschitz balls. (S et al., EJS 2012)



Why MMD,,?
» IPM(P,,, Q,,J) is obtained by solving a linear program for J =
Lipschitz and bounded Lipschitz balls. (S et al., EJS 2012)

» Quality of approximation (S et al., EJS 2012)

» For J = Lipschitz and bounded Lipschitz balls,
[IPM(Pm, Qm, 7) — IPM(,Q, 7)| = O, (m—#l) L d>2
> For 7 — unit RKHS ball,

|MMD3(P m, Qm) — MMD3, (P, Q)| = O, (m*%)



Why MMD,,?
» IPM(P,,, Q,,J) is obtained by solving a linear program for J =
Lipschitz and bounded Lipschitz balls. (S et al., EJS 2012)

» Quality of approximation (S et al., EJS 2012)

» For J = Lipschitz and bounded Lipschitz balls,
[IPM(Pm, Qm, 7) — IPM(,Q, 7)| = O, (m—#l) L d>2
> For 7 — unit RKHS ball,

|MMD3(P m, Qm) — MMD3, (P, Q)| = O, (m*%)

> Are there any other estimators of MMDy, (P, Q) that are statistically
better than MMD (P, Qm)?



Why MMD,,?
» IPM(P,,,Q,, ) is obtained by solving a linear program for J =
Lipschitz and bounded Lipschitz balls. (S et al., EJS 2012)

» Quality of approximation (S et al., EJS 2012)

» For J = Lipschitz and bounded Lipschitz balls,
[IPM(Pm, Qm, 7) — IPM(,Q, 7)| = O, (m—#l) L d>2
> For 7 — unit RKHS ball,

|MMD3(P m, Qm) — MMD3, (P, Q)| = O, (m*%)

> Are there any other estimators of MMDy, (P, Q) that are statistically
better than MMD (P, @m)? NO!! (Tolstikhin et al., 2016)

» In practice? YES!! (Krikamol et al., JMLR 2016; S, Bernoulli 2016)



Beware of Pitfalls

» There are many other distances on probabilities:

> Total variation distance
» Hellinger distance
» Kullback-Leibler divergence and its variants

» Fisher divergence ...

» Estimating these distances is both computationally and statistically
difficult.



Beware of Pitfalls

» There are many other distances on probabilities:

> Total variation distance
» Hellinger distance
» Kullback-Leibler divergence and its variants

» Fisher divergence ...

» Estimating these distances is both computationally and statistically
difficult.

» MMD4 is computationally simpler and appears statistically powerful
with no curse of dimensionality. In fact, it is NOT statistically
powerful. (Ramdas et al., AAAI 2015; S, Bernoulli, 2016)



Beware of Pitfalls

» There are many other distances on probabilities:

> Total variation distance
» Hellinger distance
» Kullback-Leibler divergence and its variants

» Fisher divergence ...

» Estimating these distances is both computationally and statistically
difficult.

» MMD4 is computationally simpler and appears statistically powerful
with no curse of dimensionality. In fact, it is NOT statistically
powerful. (Ramdas et al., AAAI 2015; S, Bernoulli, 2016)

P Recall: MMD4, is based on up which is a smoothed version of P. Even though P
and Q can be distinguished (coming up!!) based on pp and puq, the
distinguishability is weak compared to that of the above distances. (S et al.,
JMLR 2010; S, Bernoulli, 2016)

NO FREE LUNCH!!



So far. ..

P e = [ Kox) dP()
X
MMDy (P, Q) = || — polly

» Computation

» Estimation

When is P — pp one-to-one?, i.e., MMDy(P,Q) =0 = P=Q7



Characteristic Kernel

k is said to be characteristic if
MMD3#(P,Q) =0 < P=Q

for any P and Q.



Characteristic Kernel
k is said to be characteristic if
MMD3#(P,Q) =0 < P=Q
for any P and Q.
Not all kernels are characteristic.
> Example: If k(x,y) =c>0,Vx,y € X, then
po= [ kxR =€, o =c
X

and MMDy, (P, Q) = 0, VP, Q.



Characteristic Kernel

k is said to be characteristic if
MMD3#(P,Q) =0 < P=Q

for any PP and Q.

> Example: Let k(x,y) = xy, x,y € R. Then
MMD4, (P, Q) = |Ep[X] — Eg[X]].

Characteristic for Bernoulli's but not for all P and Q.



Characteristic Kernel

k is said to be characteristic if
MMD3#(P,Q) =0 < P=Q

for any PP and Q.

> Example: Let k(x,y) = (1 + xy)?, x,y € R. Then
MMD3, (P, Q) = 2(E+[X] — Eg[X])? + (E»[X?] — Eg[X?)).

Characteristic for Gaussian's but not for all P and Q.



Characteristic Kernels on R?

» Translation invariant kernel: k(x,y) = ¢(x — y), x,y € RY;
bounded and continuous.

» Bochner's theorem:
P(x) = eV gA(w), x € RY,
Rd
where A is a non-negative finite Borel measure on R¥.

Then, k is characteristic <> supp(/A) = R?. (S et al., COLT 2008; JMLR,
2010)

» Corollary: Compactly supported v are characteristic (S et al., COLT
2008; JMLR, 2010).

Key ldea: Fourier representation of MMDy,



Fourier Representation of MMD2,

MMDR(P.Q) = [ los() = ol dA()
where pp is the characteristic function of P.

Proof:
MMD3(2,Q) = [ [ w(x =y d(z - ) dF = )
(*) —V/=I{x—y,w) w _ x _
D[ e T an) de - ) de — ))
Q[ [ e d@ - )6 [ e/ d(e - 0)(y) dAw)
Rd JRI Rd

= [ ler(@) ~ wo(w)? dA),
]Rd

where Bochner's theorem is used in (x) and Fubini’s theorem in ().



Fourier Representation of MMD2,

MMDR(P.Q) = [ los() = ol dA()
where pp is the characteristic function of P.

Proof:
MMD3(2,Q) = [ [ w(x =y d(z - ) dF = )
(*) —V/=I{x—y,w) w _ x _
D[ e T an) de - ) de — ))
@ / e=V=Ix) g(p — Q)(x) / VTI) g(P — Q) (y) dA(w)
Rd JRI Rd
- /R lpel) — po(@)? dAw),

where Bochner's theorem is used in (x) and Fubini’s theorem in ().

» Suppose A = 1, i.e., uniform on RY (I!). Then MMD (P, Q) is the
L? distance between the densities (if they exist) of > and Q.



Characteristic Kernels on R?

Proof:
» Suppose supp(/A) = ¢ Then

MMDR(,2) = 0= [ lor(w) = oo dw) = 0 = o = g 2

But characteristic functions are uniformly continuous and so
wp = @g which implies P = Q.



Characteristic Kernels on R?

Proof:
» Suppose supp(/A) = ¢ Then

MMDR(,2) = 0= [ lor(w) = oo dw) = 0 = o = g 2

But characteristic functions are uniformly continuous and so
wp = @g which implies P = Q.

» Suppose supp(/A) C 9. Then there exists an open set U C R? such
that A(U) = 0. Construct P and Q such that ¢p and ¢q differ only
in U, i.e., MMDy (P, Q) > 0.



Characteristic Kernels on R?

Proof:
» Suppose Then

MMD3,(P,Q) = 0 = / lpe(w) — po(@)® dAMw) = 0= wp = pg ae.
Rd

But characteristic functions are uniformly continuous and so
wp = @g which implies P = Q.

> Suppose Then there exists an open set U C RY such
that A(U) = 0. Construct P and Q such that ¢p and ¢q differ only
in U, i.e., MMDy(P,Q) > 0.

» If ¢ is compactly supported, its Fourier transform is analytic, i.e.,
cannot vanish on an interval.



Translation Invariant Kernels on R?

MMDy, (P, Q) = [|or — 90@||L2(Rd,/\)

» Example: P differs from @ at (roughly) one frequency
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Translation Invariant Kernels on R?

MMD (P, Q) = [[pp — poll2re,n)

» Example: P differs from @ at (roughly) one frequency

o 04
03]
03
< 02 ZF -
= Loz
2 0.5 % -
ol 0.1
0.5
o s 0 5 w0 2% o o 1w 2
X o
0 04
04
03
03 —
S F o 02
G, =
01
01
o s o 5 w0 2 S o 10 2




Translation Invariant Kernels on R?

MMD (P, Q) = [[pp — poll2re,n)

» Example: P differs from @ at (roughly) one frequency

o 04
04
03
o oz ZF -
= Loz e .
o % = Characteristic function difference
ot 01
0.15]
o s o 5 w0 % 1 o 0 20 _
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&
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Translation Invariant Kernels on R

MMDy, (P, Q) = [ler — @oll 2,y
» Example: P differs from Q at (roughly) one frequency

Gaussian kernel

lop — wol
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Translation Invariant Kernels on R

MMDy, (P, Q) = [ler — @olli2re,a)

» Example: P differs from Q at (roughly) one frequency

Characteristic
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Picture credit: A. Gretton



Translation Invariant Kernels on R

MMDy, (P, Q) = [ler — @oll 2,y

» Example: P differs from Q at (roughly) one frequency

Sinc kernel
P — ol
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Translation Invariant Kernels on R

MMDy, (P, Q) = [ler — @olli2re,a)

» Example: P differs from Q at (roughly) one frequency

NOT characteristic
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Picture credit: A. Gretton



Translation Invariant Kernels on R

MMDy, (P, Q) = [ler — @oll 2,y
» Example: P differs from Q at (roughly) one frequency
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Translation Invariant Kernels on R

MMDy,(P, Q) = |lor — voll2®d,a

» Example: P differs from Q at (roughly) one frequency
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Translation Invariant Kernels on R

MMDy, (P, Q) = [ler — @olli2re,a)

» Example: P differs from Q at (roughly) one frequency

Characteristic
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Caution

Chararacteristic property relates class of kernels and class of probabilities.

L cR?
with empty
interior

with non-empty
interior

s

7 Universal
\ kernel

is compact %

Y :=supp(A)

(S et al., COLT 2008; JMLR 2010)



Characteristic Kernels

Similar reasoning hold wherever extensions of Bochner’'s theorem exist
(Fukumizu et al., NIPS 2009):

» Locally compact Abelian groups (periodic domains, e.g., circle,
d-Torus)

» Compact, non-Abelian groups (Orthogonal matrices)
> Represent and compare distributions over matrices
> The semigroup RY (histograms)

» Compare distributions over distributions




Characteristic Kernels

Similar reasoning hold wherever extensions of Bochner’'s theorem exist
(Fukumizu et al., NIPS 2009):

» Locally compact Abelian groups (periodic domains, e.g., circle,
d-Torus)

» Compact, non-Abelian groups (Orthogonal matrices)
> Represent and compare distributions over matrices
> The semigroup RY (histograms)

» Compare distributions over distributions

P Characteristic property is related to the richness of 7{ in approximating certain
class of functions. Characteristic property is in general a weaker notion than
universality. But for translation invariant kernels on R, these notions are
equivalent. (Gretton et al., NIPS 2006; Fukumizu et al., NIPS 2008, 2009;
Steinwart and Christmann, 2008; S et al., JMLR 2010, JMLR 2011;
Simon-Gabriel and Schélkopf, 2016)



So far. ..

P pp:= /X k(-,x) dP(x)

MMDy (P, Q) = llpe — polly,

» Computation
» Estimation

> MMDy(P,Q)=0 = P =Q for characteristic kernels.



Measuring (In)Dependence

» X and Y are random variables taking values in X" and ).
> (X,Y) ~ Pxy with marginals X ~ Px and Y ~ Py.

>



Measuring (In)Dependence

>

>

>

X and Y are random variables taking values in X and ).
(X, Y) ~ Pxy with marginals X ~ Px and Y ~ Py.

Dependency measure using MMD: Using kx and ky defined on X
and Y,

MMDH(ny,PXxPy) = l/kx(-,X)ky(-,y) d(ny — PX X Py)(X,_y)
—_———
k(- (x.¥)) 2

where H :=Hx @ Hy.
If k is characteristic on X' x ), then MMDy, captures independence.



Measuring (In)Dependence

» Let X and Y be Gaussian random variables on R. Then

X and Y are independent < Cov(X, Y)=E(XY)-E(X)E(Y)=0

» In general, Cov(X,Y)=0=% X LY.

» Covariance captures the linear relationship between X and Y.



Measuring (In)Dependence

> Let X and Y be Gaussian random variables on R. Then
X and Y are independent < Cov(X,Y) =E(XY)-E(X)E(Y)=0
» In general, Cov(X,Y)=0=% X LY.
» Covariance captures the linear relationship between X and Y.
> Feature space view point: How about Cov(®(X), W(Y))?
» Suppose
d(X) = (1,X,X?)and W(Y) = (1,Y, Y2 Y3).

Then Cov(®(X), ®(Y)) captures Cov(X', Y/) for i € {0,1,2} and
j€40,1,2,3}.



Measuring (In)Dependence

» Characterization of independence:
X LY & Cov(f(X),g(Y)) =0, Vmeasurable functions f and g.

» Dependence measure:

sup |Cov(f(X), &(Y))| = sup E[f(X)g(Y)] — E[f (X)E[g(Y)]|

Similar to the IPM between Pxy and Px[Py.



Measuring (In)Dependence

» Characterization of independence:
X LY & Cov(f(X),g(Y)) =0, Vmeasurable functions f and g.

» Dependence measure:

sup |Cov(f(X), &(Y))| = sup E[f(X)g(Y)] — E[f (X)E[g(Y)]|

Similar to the IPM between Pxy and Px[Py.

» Restricting functions in RKHS: (constrained covariance)

COCO(Pxy; Hx, Hy) = HfHSUIEL1 IE[f(X)g(Y)] = E[f(X)|E[g(Y)]] -
gl =1

(Gretton et al., AISTATS 2005, JMLR 2005)



Covariance Operator

Let kx and ky be the r.k.’s of Hx and Hy respectively. Then

> E[f(X)] = (f, ppx)nx and E[g(Y)] = (&, ey )3y
>

E[f(X)IE[g(Y)] = (. urx)#x (&, 1py )7y
= (f ® &,y ® [Py ) 330,
= (f, (upy ® ppy )8,
= (g, (up, ® uu»x)fmy



Covariance Operator

Let kx and ky be the r.k.’s of Hx and Hy respectively. Then

> E[f(X)] = (f, ppx)nx and E[g(Y)] = (&, ey )3y
>

E[f(X)]E[g(Y)] = (f, upx)7x (&, 1py )7y

= (f ® &,y ® [Py ) 330,
= (f, (upy ® ppy )8,

=

g (py ® ppy )y,



Covariance Operator

> Assuming E\/kx (X, X)ky(Y,Y) < oo, we obtain

E[f(X)g( Y)] = <f7]E[kX(aX) & kY('» Y)]g>7-[X
= <g’E[kY(a Y) ® kx(‘7X)]f>ny

COV(f(X),g(Y)) = <fa CXYg>7-[X = <g, CYXf>’HY

where
Cxy = E[kx (-, X) @ ky (-, Y)] — pipy ® pip,

is a cross-covariance operator from Hy to Hx and Cyx = C%, .

Compare to the feature space view point with canonical feature maps



Dependence Measures

COCO(Pxy; Hx,Hy) = ‘ ‘sup | (f, nyg>HX |
[Fll, =1
llglly, =1

= [[Cxvllop = [[Cyx|lop,

which is the maximum singular value of Cxy .




Dependence Measures

COCO(Pxy; Hx,Hy) = ‘ ‘sup | (f, nyg>HX |
[Fll, =1
llglly, =1

= [[Cxvllop = [[Cyx|lop,

which is the maximum singular value of Cxy .

» Choosing kx (-, X) = (-, X)2 and ky (-, Y) = (-, Y),, for Gaussian
distributions,
X1LlY<& ny =0
» In general,

XLYS& Cyx=0.



Dependence Measures

» How about we consider other singular values?

» How about ||Cyx||3s, which is the sum of squared singular values of
Cyx?

Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., ALT
2005, JMLR 2005)

> ||CYX||op < ||CYX||H5



Dependence Measures
>
COCO(Pxy; Hx, Hy) == sup [E[f(X)g(Y)] = E[f(X)]E[g(Y)]].

[l £1l7x =1
llgll#y, =1



Dependence Measures
>
COCO(Pxy; Hx, Hy) == sup [E[f(X)g(Y)] - E[f(X)|E[g(Y)]].

[l £1l7x =1
llgll#y, =1

» How about we use different constraint, i.e.,

f @ gllaxen, <17
sup Cov(f(X),g(Y)) = sup (f, Cxv &)y

IfRgll+ o, <1 1f@gllHyor, <1

= sup (f®g, CXY>’H oH
lfRgllry@m, <1 e

= I1Cxv lxomy = |Cxy llHs



Dependence Measures

>
COCO(Pxy; Hx,Hy) :== HFHSUI[1 IE[f(X)e(Y)] = E[f(X)]E[g(Y)]] -
lgllcy =1
| 4

1Cxy lrxony = IB[kx (-, X) ® ky (, Y)] = tpy ® peyllxsry
H/kx ®ky Y) d(Iny—PX Xpy)

= MMDH)(@H)/(]P)XY7]P)X X Py)

HxQHy



Dependence Measures

> Hx @ Hy is an RKHS with kernel kxky.
» If kxky is characteristic, then
[Cxy lluxerny =06 Pxy =Px xPy & X LY
» If kx and ky are characteristic, then
ICxy|lus =0< X LY.
(Zoltan & S., 2018)
» Using the reproducing property,

| Cxy I35 = ExyEx/y kx (X, X Vky (Y, Y")
+Exx kx (X, X VEyy ky (Y, Y")
—2. Exrys [Exkx (X, X)Eyky (Y, Y")]

» Can be estimated using a V-statistic (empirical sums).



Applications

» Two-sample testing (Gretton et al., NIPS 2006, JMLR 2012; Harchaoui et
al., NIPS 2008)

» Goodness-of-fit testing (Balasubramanian et al., 2017)

» Independence testing (Gretton et al., NIPS 2008)

» Conditional independence testing (Fukumizu et al., NIPS 2008)

» Supervised dimensionality reduction (Fukumizu et al., JMLR 2004)

> Kernel Bayes rule (filtering, prediction and smoothing) (Fukumizu et
al., JMLR 2013)

» Distribution regression (Szabé et al., JMLR 2016)

» Kernel CCA (Fukumizu et al., JMLR 2007),....

Review paper (Muandet et al., 2017)



Application: Two-Sample Testing



Two-Sample Problem

i..d.

» Given random samples {Xi,..., X,,} "~ P and
(Yh,.... Y.} "= Q.
» Determine: P=QorP#£Q?7?
» Approach:
Hy:P=Q Ho : MMDy(P,Q) =0
H :P#£Q - Hy : MMDy(P,Q) > 0

> If MMD%(IP’,,,,@,,) is
> far from zero: reject Hp

> close to zero: accept Ho



Type-1 and Type-Il Errors

Truth
Statistical Null hypothesis Null hypothesis
decision true false
Reject null Type | error Correct (power)
hypothesis
Do not reject Correct Type Il error
null hypothesis

» Given P = QQ, want threshold or critical value t; _,, such that
PI’HO(MMD%{(]P),-",Q") > tl—(y) S .

Critical value

Region of non-rejection
of Ha




Statistical Test: Large Deviation Bounds

» Given P = QQ, want threshold t such that
PrHo(MMD%[(Pman) > t) <a.

» We showed that (S et al., EJS 2012)

pr( | MMD3, (P, Q) — MMD3,(P, Q)|

> W(l—i—,ulogé)) < a.



Statistical Test: Large Deviation Bounds

» Given P = QQ, want threshold t such that
PrHo(MMD%[(Pman) > t) <a.

» We showed that (S et al., EJS 2012)

Pr( | MMD, (P, ©,) — MMDZ,(P, Q)|
> W(l—i—,ulogé)) < a.

> a-level test: Accept Hj if

MMD2,(P,, Q) < W (1 +1/2log ;)

Otherwise reject.

Too conservative!!



Statistical Test: Asymptotic Distribution (cretton et al., NIPS 2006,

JMLR 2012)
Unbiased estimator of MMD?,(P, Q): U-statistic

MMD3, = ——— Z (X3, X)) + k(Yi, Y)) = k(Xi, Y;) = k(X;, V)
#i

h((Xi,Yi),(X;,Y5))



Statistical Test: Asymptotic Distribution (cretton et al., NIPS 2006,

JMLR 2012)
Unbiased estimator of MMD?,(P, Q): U-statistic
1

D2 (XX VY X V) — k(X Y,
MMDH-fmZk(XM)@Hk(Y,,Y,) k(X V) = k(X;, Y7)
i)

A%, Y1), (%))
» Under Hy,
mMMD3, 53 "\ (67 —2) as n— o,
i=1

where 6; ~ N(0,2) i.i.d., and ); are solutions to

k(x,y) ¥i(x) dP(x) = A\ivhi(y)

centered

{

X



Statistical Test: Asymptotic Distribution (cretton et al., NIPS 2006,

JMLR 2012)
Unbiased estimator of MMD?,(P, Q): U-statistic

MMD3, = ——— Z (X3, X)) + k(Yi, Y)) = k(Xi, Y;) = k(X;, V)
#i

h((Xi,Y1),(X;,Y)))
» Under Hy,

m/\m%ﬂ>2)\,-(0,-2—2) as n — oo,
i1

where 6; ~ N(0,2) i.i.d., and ); are solutions to

[ Koty i d) = Avi(y)
v centered

» Consistent (Type-ll error goes to zero): Under Hy,

Jm (/\WB@ . MMD;(P,Q)) X N(0,02) as n— oc.



Statistical Test: Asymptotic Distribution (cretton et al., NIPS 2006,

JMLR 2012)

» «-level test: Estimate 1 — a quantile of the null distribution using
bootstrap.

MMD density under HO

¥% sum

e irical POF

Prob. density

Picture credit: A. Gretton



Statistical Test Without Bootstrap (Gretton et al., NIPS 2009)

» Estimate the eigenvalues, \; from combined samples
> Define Z := (X1,..., Xm Yi,..., Ym)
> K= k(Zi, Z)
» Compute the eigenvalues, N of
K = HKH

where H =1 — £ 15,17,

» «-level test: Compute the 1 — « quantile of the distribution
associated with
2m
SR 6 -2)
i=1

» Test is asymptotically a-level consistent



Experiments (Gretton et al., NIPS 2000)
» Comparison example: Canadian Hansard corpus (agriculture,
fisheries and immigration)
» Samples: 5-line extracts
» Kernel: k-spectrum kernel with k = 10
» Sample size: 10

» Repetitions: 300

» Compute MMD?,

k-spectrum kernel: average Type Il error 0 (o = 0.05)

Bag of words kernel: average Type Il error 0.18

First ever test on structured data



Choice of Characteristic Kernel
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Let X = R?. Suppose k is a Gaussian kernel, k,(x,y) = e 2-



Choice of Characteristic Kernels

Ix—yli3

Let X = R?. Suppose k is a Gaussian kernel, k,(x,y) = e 2-

» MMDy is a function of o.

> So MMDy, is a family of metrics. Which one should we use in
practice?

> Note that MMDy_ — 0aso — 0or o — co.
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Let X = R?. Suppose k is a Gaussian kernel, k,(x,y) = e 2-

» MMDy is a function of o.

> So MMDy, is a family of metrics. Which one should we use in
practice?

> Note that MMDy_ — 0aso — 0or o — co.

Therefore, the kernel choice is very critical in applications.



Choice of Characteristic Kernels

Ix—yli3

Let X = R?. Suppose k is a Gaussian kernel, k,(x,y) = e 27

» MMDy is a function of o.

> So MMDy, is a family of metrics. Which one should we use in
practice?

> Note that MMDy_ — 0aso — 0or o — co.

Therefore, the kernel choice is very critical in applications.
Heuristics:

> Median: o = median (|| X — Xila:i#j, i,j=1,..., m) where
X* = ((X7)i, (Yi)i) (Gretton et al., NIPS 2006, NIPS 2009, JMLR 2012).

» Choose the test statistic to be MMDy, . (P, Q) where

o" = arg Ug(](?éo) MMDy; (P, Q)

(S et al., NIPS 2009)



Classes of Characteristic Kernels (s et ai., NIPS 2009)
More generally, we use

MMD(P, Q) := sup MMDy,, (P, Q).
keX

Examples for X :
> Kg = {e“’“x—)’H%’ x,y ER? : 0 € R, }.
> Kiin = {kn = 320y Aikilkais pd, 36, A =1}

> Keon = {kn = 20 NikilAi >0, S0 A =1}



Classes of Characteristic Kernels (s et ai., NIPS 2009)
More generally, we use

MMD(P, Q) := sup MMDy,, (P, Q).
keX

Examples for X :

> Ky = {e=olx¥l5 x,y eRY : o e R, }.

> Kiin = {kn = 320y Aikilkais pd, 36, A =1}

> Keon = {kn = 20 NikilAi >0, S0 A =1}
Test:

» «-level test: Estimate 1 — « quantile of the null distribution of
MMD (P, Qpn) using bootstrap.

» Test consistency: Based on the functional central limit theorem for
U-processes indexed by VC-subgraph X.

Computational disadvantage!!



Experiments

> q=N(0,02).

> p(x) = q(x)(1 + sinvx).

> k(x,y) = exp(—(x — y)?/0o).

> Test statistics: MMD(P,, Q) and MMDy;_(Pp,, Qp) for various o.



Experiments

MMD(P, Q)

OO

Error (in %)

(=)

By

——Type-I error
——Type-Il error

1 125 15



Experiments

MMDs,, (P, Q)

10123458
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Choice of Characteristic Kernels (Gretton et al., NIPS 2012)

» Choose a kernel that minimizes the Type-Il error for a given Type-I
error:

k* € inf T k).
argke)c:nlxge,(k)ga ypen(k)

» Not easy to compute with the asymptotic distributions of the
U-statistic, MMD3, (Pp, Qm).

> Recall
— 1 m
MMD3, = m(m—1) D KX X)) + k(Yi, Y)) = k(X, Y)) = K(X;, Vi)
i#

h((Xi,¥1),(X5,Y}))

ARS)



Choice of Characteristic Kernels (Gretton et al., NIPS 2012)

» Choose a kernel that minimizes the Type-Il error for a given Type-I
error:
k* € ar inf Typey (k).
ng)C:Type,(k)ga yp ”( )
» Not easy to compute with the asymptotic distributions of the

U-statistic, Mmk(]}bm, Qm)-

» Modified statistic: Average of U-statistics computed on independent
blocks of size 2.
> m/2
MMDH (Pm, Qm)= Zk(le 1, X2i) + k(Yai-1, Y2i)
i=1
—k(Xai—1, Y2i) — k(Yai—1, X2i),

hi(Z;)
where Z; = (Xoi—1, X2, Y2i—1, Ya2i).
» Recall
—— 1
MMD3, .= 7Zk Xi, X;) + k(Yi, ;) — k(X;, Y;) — k(X;, Y:)

m(m

)% B Y0, (. Y7))



Modified Statistic

Advantages:

> MMD32, is computable in O(m) while I\m% requires O(m?)
computations.

» Under Hy,
VmMMDZ, (P, Qm) = N(0,207,),

where 0 = Ezhi(Z) — (Ezhk(Z))? assuming 0 < EzhZ(Z) < oo.

» The asymptotic distribution is normal as against weighted sum of
infinite x2. Therefore, the test threshold is easy to compute.



Modified Statistic

Advantages:

> MMD32, is computable in O(m) while I\m% requires O(m?)
computations.

» Under Hy,
VmMMDZ, (P, Qm) = N(0,207,),

where 0 = Ezhi(Z) — (Ezhk(Z))? assuming 0 < EzhZ(Z) < oo.

» The asymptotic distribution is normal as against weighted sum of
infinite x2. Therefore, the test threshold is easy to compute.

Disadvantages:

» Larger variance

» Smaller power



Type-1 and Type-Il Errors

» Test threshold: For a given k and «,
tk,l—(y - \/thkq)Nl(]- - 05)
where @ is the cdf of N(0,1).

» Type-ll error:

o (aml(l —a)- MMD%;P;@NE>

Critical value
=
i
Region of non-rejection | Region of rejection of H,
of Hy 1
1
FaN VY
/ / .\\
i g V




Best Kernel: Minimizes Type-Il Error

> Since ® is a strictly increasing function, the Type-Il error is

MMD2, (P,
minimized by maximizing MWD, (B.Q).

O'hk
» Optimal kernel:
e MMD,(P.Q)
€ argsup ————=,
ke O hy

> Since MI\/ID%k and op, depend on unknown P and Q, we split the

data into train and test data to estimate k* on the train data as k*

and evaluate the threshold ¢;. ;_ on the test data.



Data-Dependent Kernel

—_~—

> Train data: MMD3,, and Gp,.

» Define o

) MMD2,

k* € argsup ———*
kek On, + Am

for some A\, — 0 as m — oo.

—_~—

> Test data: MMD3, , &n,. and tp. ;.

—_~—

> If M/\/ID%;* > tp. .. reject Ho, else accept.



Data-Dependent Kernel

> Train data: MMD3,, and Gp,.

» Define

) MMD2,
k* € argsup ———*
kek Ohe + Am

for some A\, — 0 as m — oo.

—_~—

> Test data: MI\/ID,Z{Q*, Gpy and tp g

—_~—

> If M/\/ID%;* > tp. .. reject Ho, else accept.

—

Similar results are recently obtained for MMD%Lk (Sutherland et al
2017)

., ICLR



Advanced Topics

» Consistency of kernel CCA (Fukumizu et al., JMLR 2007)

» Convergence rates for kernel-based hypothesis tests (Balasubramanian
et al., 2017)

» Conditional covariance operators and applications



Questions
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