

3D MRI Brain Tumor Segmentation based on U-Net

Tongxue Zhou^{1,2}, Su Ruan¹ and Stéphane Canu²

¹Université de Rouen Normandie, LITIS - QuantIF, Rouen 76183, France ²INSA de Rouen, LITIS - Apprentissage, Rouen 76800, France

Introduction

Automatic segmentation of brain tumor in magnetic resonance images (MRI) is necessary for diagnosis, monitoring and treatment. Manual segmentation is time-consuming, expensive and subjective. We present a robust automatic segmentation algorithm based on U-Net, which incorporates residual block, dilated convolution and deep supervision to improve the segmentation results.

Dataset	Method
• BraTS 2017 dataset	• Pre-processing - Crop: $240 \times 240 \times 155$ to $128 \times 128 \times 128$
• Training set: 285 data patients.	– Bias Field Correction and Intensity Normalization

- Validation set: 46 data patients.
- Input Modalities:
 - post-contrast T1-weighted
 - native T1
 - native T2-weighted
 - T2 Fluid Attenuated Inversion Recovery
- Volume Size: $240 \times 240 \times 155$
- Resolution: $1mm \times 1mm \times 1mm$

- Architecture:
 - Residual block: use dilated convolutions to aggregate features at multiple scales.
 - Deep supervision: integrate segmentation layers at different levels of the network and combine them using element-wise summation.
- Training implementation: Keras with Nvidia GPU Quadro P5000, adam optimizer, initial learning rate is 5e-4 with a decreasing learning rate factor 0.5 with patience of 10 epochs.

Results

	Dice	Sensitivity	Specificity	Hausdorff95
Method	whole core enh	whole core enh	whole core enh	whole core enh
Baseline	0.8660 0.7679 0.6406	0.8544 0.7513 0.6737	0.9947 0.9972 0.9980	8.3942 8.8408 8.1346
Baseline + Deep supervision	0.8786 0.8122 0.6666	0.8740 0.8040 0.7249	0.9936 0.9967 0.9975	7.5355 7.5855 7.6735
Baseline + Res_dil	0.8824 0.8193 0.6954	0.8781 0.8180 0.7397	0.9936 0.9963 0.9974	7.5180 6.8994 6.2579
Baseline + Res_dil + Deep supervision	0.8851 0.8455 0.7342	0.9172 0.8303 0.7425	0.9910 0.9966 0.9974	5.8088 6.4748 6.8110

Quantitative segmentation results on BraTS 2017 dataset

Qualitative segmentation results from a randomly chosen patient, edema is shown in green, enhancing tumor is shown in red and necrotic and non-enhancing tumor are shown in blue.

Ground truth prediction Ground truth prediction

Conclusion

A semantic segmentation network is proposed for multimodal 3D MRI brain tumor segmentation, a novel residual block with dilated convolution and deep supervision are employed to improve the segmentation performance. Experiments show the effectiveness of the proposed method.

References

- [1] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, pages 234–241. Springer, 2015.
- [2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.