We propose a **convex** concomitant formulation to **jointly** estimate the regression coefficients and the covariance matrix in **high dimensional** linear regression with **correlated Gaussian noise**.

Our estimator outperforms competitors on synthetic and real data.

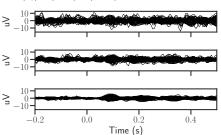
 Real data, auditory stimulation

 Image: ClaR (ours)
 SGCL
 MLER
 MLE
 MRCER
 MTL

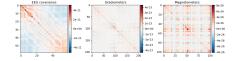
Concomitant Lasso with repetitions (CLaR)

Q. Bertrand¹ M. Massias¹ A. Gramfort¹ J. Salmon². ¹Inria, Univ. Paris Saclay, ²IMAG, Univ. Montpellier, CNRS

- Intro
 - M/EEG data are very noisy (SNR=1)
 - it is thus customary to make several repetitions of the same experiment
 - in order to average the signals and increase the signal to noise ratio
 - Real EEG data
 - # of repetitions 5 (top), 10 (middle), 50 (bottom)



• M/EEG data are contaminated with correlated Gaussian noise

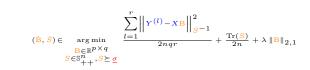


Model and notations Linear Multi-Task setting with correlated Gaussian noise:

- $n: \# ext{ of sensors}$
- p : # of features
- q : # of tasks/time points
- $X \in \mathbb{R}^{n imes p}$: design matrix
- $\mathbf{B} \in \mathbb{R}^{p imes q}$: regression coefficients
- $S \in \mathbb{R}^{n imes n}$: square root of the covariance matrix
- $\mathbf{E}^{(l)} \in \mathbb{R}^{n imes q}$ random matrix with i.i.d. normal entries
- $Y^{(l)} \in \mathbb{R}^{n \times q}$: signals

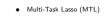
Model: $Y^{(l)} = XB^* + S^*E^{(l)}, \forall l \in [r]$

• $\bar{Y} = \frac{1}{r} \sum_{l} Y^{(l)} \in \mathbb{R}^{n \times n}$ mean of the signals across repetitions



Previous approaches: use the mean

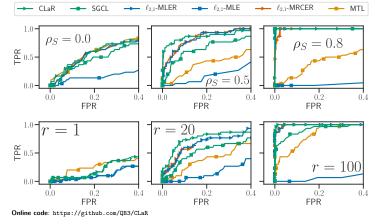
Our approach: use repetitions



$$\hat{\mathbf{B}} \in \mathop{\arg\min}_{\mathbf{B} \in \mathbb{R}^{p \times q}} \frac{1}{2nq} \left| \left| \bar{Y} - X\mathbf{B} \right| \right|^{2} + \lambda \left\| \mathbf{B} \right\|_{2,1}$$

• SGCL $(\hat{\mathbf{B}}, \hat{S}) \in \underset{\substack{\mathbf{B} \in \mathbb{R}^{p \times q} \\ S \in \mathbb{S}_{++}^n, S \succeq \underline{\sigma}}}{\operatorname{arg min}} \quad \frac{\|\bar{Y} - X\mathbf{B}\|_{S-1}^2}{2nq} + \frac{\operatorname{Tr}(S)}{2n} + \lambda \|\mathbf{B}\|_{2,1}$

More experin



Download the paper

