Beating the market is possible,

when using GANs for investment

strategies tuning and combination

Generative Adversarial Networks for Financial Trading Strategies

Adriano Koshiyama, Nick Firoozye and Philip Treleaven Computer Science Department, University College London [adriano.koshiyama.15, n.firoozye, p.treleaven]@ucl.ac.uk

Introduction

To obtain an edge in a highly competitive environment, the analyst needs to proper fine-tune its strategy, or discover how to combine weak signals in novel alpha creating manners

Conditional Generative Adversarial Networks (cGANs) can have an impact into both aspects of trading strategies; also, we can list a few advantages of such method, like:

- generating more diverse training and testing sets, compared to traditional resampling techniques;
- ii. able to draw samples specifically about stressful events, ideal for model checking and stress testing; and

The

Institute

Alan Turing

CNPq

iii. providing a level of anonymization to the dataset, differently from techniques that (re)shuffle/resample data.

In this work we provide a full methodology on (i) the training and selection of a cGANs for time series; (ii) how each sample is used for strategies calibration; and (iii) how all samples can be used for ensemble modelling.

cGAN: Training and Combining

Conditional GANs are an extension of a traditional GAN, when both *G* and *D* decision is based not only in noise or generated inputs, but include an information set **v**.

Results

All results: Regression Tree

MEDIAN AND MEAN ABSOLUTE DEVIATION (MAD) RESULTS OF TRADING AND ENSEMBLE STRATEGIES ON THE OS SET

Trad Strat	Metric	B	Ensemble Strategy			
		D	Stat Boot	cGAN-Small	cGAN-Medium	cGAN-Large
Reg Tree	Sharpe	20	0.042560 (0.380039)	0.053867 (0.378896)	0.044741 (0.380228)	0.080540 (0.360695)
		100	0.062837 (0.378920)	0.058820 (0.387749)	0.030588 (0.390575)	0.086423 (0.406171)
		500	0.074116 (0.397212)	0.067905 (0.392788)	0.072071 (0.392382)	0.098094 (0.424621)
	Calmar	20	0.019442 (0.230641)	0.022619 (0.201044)	0.018987 (0.200625)	0.035473 (0.191353)
		100	0.027235 (0.241023)	0.024254 (0.209783)	0.011890 (0.20152.)	0.036523 (0.239046)
		500	0.034422 (0.266419)	0.031174 (0.212710)	0.032761 (0.221514)	0.042232 (0.251194)
	RMSE	20	0.014397 (0.005570)	0.014561 (0.005604)	0.014289 (0.005414)	0.014411 (0.005432)
		100	0.014096 (0.005486)	0.014281 (0.005545)	0.013988 (0.005357)	0.014099 (0.005373)
		500	0.014035 (0.005470)	0.014203 (0.005531)	0.013912 (0.005346)	0.014033 (0.005361)
MLP	Sharpe	20	0.080722 (0.390515)	0.079428 (0.416847)	0.087960 (0.393913)	0.069800 (0.398197)
		100	0.097576 (0.382028)	0.063012 (0.415537)	0.091344 (0.397506)	0.087216 (0.414697)
		500	0.092262 (0.390161)	0.059344 (0.415700)	0.073652 (0.389588)	0.085333 (0.414096)
	Calmar	20	0.035525 (0.223141)	0.030805 (0.217727)	0.037877 (0.219139)	0.031145 (0.214533)
		100	0.045916 (0.227827)	0.023479 (0.223602)	0.040718 (0.217648)	0.040572 (0.223359)
		.500	0.038678 (0.237459)	0.024014 (0.225413)	0.035688 (0.215691)	0.035885 (0.222552)
	RMSE	20	0.014030 (0.005416)	0.013999 (0.005408)	0.013910 (0.005345)	0.014055 (0.005369)
		100	0.013924 (0.005399)	0.013973 (0.005403)	0.013878 (0.005339)	0.014028 (0.005363)
		500	0.013924 (0.005420)	0.013974 (0.005402)	0.013887 (0.005337)	0.014033 (0.005362)

Tree (Max Depth = 7): 0.1781 (error) = 0.0009 (bias^2) + 0.0873 (var) + 0.0889 (noise)
Ganning (B=10): 0.1420 (error) = 0.0010 (bias^2) + 0.0511 (var) + 0.0889 (noise)
Ganning (B=100): 0.1366 (error) = 0.0010 (bias^2) + 0.0457 (var) + 0.0889 (noise)

In our case, given a time series $y_1, ..., y_t, ..., y_T$, our conditional set is $\mathbf{v} = [y_{t-1}, ..., y_{t-p}]$ and we are sampling/discriminating is $\mathbf{x} = [y_t]$. We train the cGAN by solving this min-max problem:

Outcomes

 In combination of trading strategies, our results suggest that both approaches are equivalent in aggregate;
 In fine-tuning of trading strategies, we have evidence that cGANs can be used for model tuning, bearing better results in cases where traditional schemes fail.

