A Degeneracy Framework for Scalable Graph Autoencoders

Guillaume Salha^{1,2}, Romain Hennequin¹, Viet-Anh Tran¹, Michalis Vazirgiannis²

Deezer Research & Development, Paris, France ² LIX, École Polytechnique, Palaiseau, France

I - Summary

Context:

- **Graphs** have become ubiquitous in the Machine Learning community.
- Learning node embeddings, i.e. low dimensional vector representations of nodes in which similar nodes are close, appears as an effective way to extract meaningful information from graph structures.
- Graph autoencoders (AE) and variational autoencoders (VAE) recently emerged as powerful node embedding methods.
- However, existing graph AE and VAE suffer from scalability issues, and all experiments are limited to relatively small graphs (<20K nodes).</p>

Contributions:

- We introduce a general framework to scale graph AE and VAE models, leveraging graph degeneracy concepts (k-core decomposition).
- We apply this framework to five real-world datasets and two learning tasks. These are the first applications of graph AE/VAE to large graphs with up to millions of nodes/edges.
 We empirically show that our approach significantly improves scalability while preserving performance. We also achieve competitive results w.r.t. alternative node embeddings methods such as node2vec and DeepWalk.

IV - Scaling-Up Graph AE and VAE with Degeneracy

Despite promising results, graph AE and VAE suffer from scalability issues:

- Inner product decoding suffers from a $O(dn^2)$ complexity
- Training complex GNN encoders (e.g. spectral models, see [3]) might also be costly!

 \rightarrow We introduce a framework to scale graph AE and VAE models to large graphs. Key idea: optimize loss from a subset of nodes, instead of using the entire graph G.

Step 1 - Identify dense parts of \mathcal{G} by computing its core decomposition.

- k-core or k-degenerate version of G = largest subgraph of G for which every node has a degree ≥ k within the subgraph.
- **Fast** O(m) computation for undirected graphs.

This work [3] will be presented at the **IJCAI 2019** international conference.

II - Representation Learning on Graphs

We consider an **undirected graph** $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with $|\mathcal{V}| = n$ nodes, $|\mathcal{E}| = m$ edges, without self-loops. A is the $n \times n$ adjacency matrix of \mathcal{G} , weighted or not.

Node Embedding paradigm: instead of directly working at the graph level, map nodes into a low-dimensional vector space \mathcal{Z} .

■ Node $i \in \mathcal{V} \longrightarrow$ latent vector z_i of size $d \ll n$.

convenient for challenging tasks, e.g. missing link prediction and node clustering [1].

Effective tool to extract representative subgraphs [3].

Step 2 - Train (V)AE on k-degenerate subgraph of \mathcal{G} .

We only derive latent vectors for this subgraph.
 Graph AE/VAE: still complex, but now the input subgraph is much smaller than *G*.

• k is a parameter to tune (perf./speed trade-off).

Step 3 - Infer other vectors using a simple propagation heuristic.

- We introduce a theoretically founded propagation scheme (see paper [3] for technical details).
- Linear comb. of already learned latent vectors.
- Propagation in O(m) time complexity.

V - Experimental Analysis

We provide an in-depth evaluation of our framework on:

- **5 real-world graphs:** CORA, CITESEER, PUBMED, GOOGLE, PATENT (2.7K to 3M nodes).
- 10 variants of graph AE and VAE models from existing literature.

(Images from https://tkipf.github.io/).

III - Graph Autoencoders (AE) and Variational Autoencoders (VAE)

Graph AE and VAE recently emerged as powerful node embedding methods [2] → successful applications to link prediction, node clustering, recommendation, graph generation...

Graph AE: unsupervised learning of a node embedding (**encoding**) from which reconstructing the graph (**decoding**) is possible.

Encoder step: learn $n \times d$ embedding matrix Z, stacking up latent vectors z_i .

Usually the output of a Graph Neural Network (GNN):

 $Z = \mathsf{GNN}(A)$

Decoder step : reconstruct *A* using **inner products** between latent variables with sigmoid activation:

 \hat{A} = $\sigma(ZZ^T)$

Training: minimize reconstruction loss $||A - \hat{A}||_F$, by stochastic gradient descent.

$$A \longrightarrow \mathsf{GNN}$$
 Encoder $\longrightarrow Z \longrightarrow \mathsf{IP}$ Decoder $\longrightarrow \hat{A}$

2 graph learning tasks: Link Prediction and Node Clustering

Model	Size of input	Mean Perf. on	Mean Running Times (in sec.)					
	<i>k</i> -core (nb nodes)	AUC	AP	k-core dec.	Model train	Propagation	Total	Speed gain
VAE on ${\cal G}$	_	83.02 ± 0.13	87.55 ± 0.18	_	710.54	-	710.54	_
on 2-core	9 277 ± 25	83.97 ± 0.39	85.80 ± 0.49	1.35	159.15	0.31	160.81	x 4.42
on 3-core	5 551 ± 19	83.92 ± 0.44	85.49 ± 0.71	1.35	60.12	0.34	61.81	x 11.50
on 4-core	3 269 ± 30	82.40 ± 0.66	83.39 ± 0.75	1.35	22.14	0.36	23.85	x 29.79
on 5-core	1 843 ± 25	78.31 ± 1.48	79.21 ± 1.64	1.35	7.71	0.36	9.42	x 75.43
on 8-core	414 ± 89	67.27 ± 1.65	67.65 ± 2.00	1.35	1.55	0.38	3.28	x 216.63
on 9-core	149 ± 93	61.92 ± 2.88	63.97 ± 2.86	1.35	1.14	0.38	2.87	×247.57
Spectral emb.	_	83.14 ± 0.42	86.55 ± 0.41	-	31.71	-	31.71	_
(best baseline)								

Table: Link Prediction on PUBMED graph (n=20K, m=44K), using graph VAE model from [2] on all cores

Model	Size of input	Mean Perf. on Test Set (in %)	Mean Running Times (in sec.)				
	k-core (nb nodes)	Mutual Information	k-core dec.	Model train	Propagation	Total	
VAE on 14-core	46 685	25.22 ±1.51	507.08	6 390.37	120.80	7 018.25 (1h57)	
on 15-core	35 432	24.53 ± 1.62	507.08	2 589.95	123.95	3 220.98 (54min)	
on 16-core	28 153	24.16 ± 1.96	507.08	1 569.78	123.14	2 200.00 (37min)	
on 17-core	22 455	24.14 ± 2.01	507.08	898.27	124.02	1 529.37 (25min)	
on 18-core	17 799	22.54 ± 1.98	507.08	551.83	126.67	1 185.58 (20min)	
node2vec	_	24.10 ±1.64	-	26 126.01	-	26 126.01 (7h15)	
(best baseline)							

Table: Node Clustering on PATENT graph (n = 3M, m = 14M), using graph VAE model from [2] on 14 to 18 cores (over 64) <u>Note:</u> the graph is too large to compare to "VAE on \mathcal{G} "... however, our approaches are competitive w.r.t. baselines

Graph VAE: assume a probabilistic model on the graph structure involving some latent variables z_i of length d for each node, interpreted as latent representations.
Inference model (encoder):

 $q(Z|A) = \prod_{i=1}^n q(z_i|A)$ where $q(z_i|A) = \mathcal{N}(z_i|\mu_i, ext{diag}(\sigma_i^2))$.

Gaussian parameters are learned using two GNNs: $\mu = \text{GNN}_{\mu}(A)$ and $\log \sigma = \text{GNN}_{\sigma}(A)$.

Generative model (decoder):

$$p(A|Z) = \prod_{i=1}^n \prod_{j=1}^n p(A_{ij}|z_i, z_j), ext{ where } p(A_{ij} = 1|z_i, z_j) = \sigma(z_i^T z_j).$$

Training: maximize a tractable lower bound of the model's likelihood (ELBO):

$$\mathcal{L} = \mathbb{E}_{q(Z|A)} \Big[\log p(A|Z) \Big] - \mathcal{D}_{KL}(q(Z|A) \| p(Z)) \Big]$$

by gradient descent, with a Gaussian prior $p(Z) = \prod_i p(z_i) = \prod_i \mathcal{N}(z_i|0, I)$. $\mathcal{D}_{KL}(\cdot, \cdot)$ is the Kullback-Leibler divergence.

Main takeaways:

- Significant **scalability** improvement, while **performance** preserved for largest cores.
- Scaled AE/VAE are competitive w.r.t. DeepWalk, node2vec, LINE (+ spectral embedding for medium-size graphs)

Next steps:

Extending the framework to attributed graphs? See our experiments in [3]
 Extending graph AE/VAE to directed graphs? See our recent preprint [4]
 Current works in progress:

- Towards theoretical guarantees for k-core approximations
- Graph AE/VAE for dynamic graphs
- Graph AE/VAE for large-scale music recommendation

References

[1] P. Goyal and E. Ferrara. Graph embedding techniques, applications, and performance: A survey. *Knowledge-Based Systems*, 151:78–94, 2018.

[2] T. N. Kipf and M. Welling. Variational graph auto-encoders. NeurIPS Workshop on Bayesian Deep Learning, 2016.

[3] G. Salha, R. Hennequin, V. A. Tran, and M. Vazirgiannis. A degeneracy framework for scalable graph autoencoders. IJCAI, 2019.

[4] G. Salha, S. Limnios, R. Hennequin, V. A. Tran, and M. Vazirgiannis. Gravity-inspired graph autoencoders for directed link prediction. Arxiv, 2019.