
A Degeneracy Framework for Scalable Graph Autoencoders

Guillaume Salha1,2, Romain Hennequin1, Viet-Anh Tran1, Michalis Vazirgiannis2

1 Deezer Research & Development, Paris, France
2 LIX, École Polytechnique, Palaiseau, France

I - Summary

Context:
Graphs have become ubiquitous in the Machine Learning community.
Learning node embeddings, i.e. low dimensional vector representations of nodes in which
similar nodes are close, appears as an effective way to extract meaningful information from
graph structures.
Graph autoencoders (AE) and variational autoencoders (VAE) recently emerged as
powerful node embedding methods.
However, existing graph AE and VAE suffer from scalability issues, and all
experiments are limited to relatively small graphs (<20K nodes).

Contributions:
We introduce a general framework to scale graph AE and VAE models, leveraging
graph degeneracy concepts (k-core decomposition).
We apply this framework to five real-world datasets and two learning tasks. These are the
first applications of graph AE/VAE to large graphs with up to millions of nodes/edges.
We empirically show that our approach significantly improves scalability while preserving
performance. We also achieve competitive results w.r.t. alternative node embeddings
methods such as node2vec and DeepWalk.

This work [3] will be presented at the IJCAI 2019 international conference.

II - Representation Learning on Graphs

We consider an undirected graph G = (V,E) with ∣V∣ = n nodes, ∣E∣ =m edges,
without self-loops. A is the n ×n adjacency matrix of G, weighted or not.

Node Embedding paradigm: instead of directly working at the graph level, map
nodes into a low-dimensional vector space Z.

Node i ∈ V Ð→ latent vector zi of size d≪ n.
convenient for challenging tasks, e.g. missing link prediction and node clustering [1].

Ð→

(Images from https://tkipf.github.io/).

III - Graph Autoencoders (AE) and Variational Autoencoders (VAE)

Graph AE and VAE recently emerged as powerful node embedding methods [2]
→ successful applications to link prediction, node clustering, recommendation, graph generation...

Graph AE: unsupervised learning of a node embedding (encoding) from which
reconstructing the graph (decoding) is possible.

Encoder step: learn n × d embedding matrix Z, stacking up latent vectors zi.

Usually the output of a Graph Neural Network (GNN):

Z = GNN(A)
Decoder step : reconstruct A using inner products between latent variables with sigmoid activation:

Â = σ(ZZT)
Training: minimize reconstruction loss ∥A − Â∥F , by stochastic gradient descent.

A GNN Encoder Z IP Decoder Â

Graph VAE: assume a probabilistic model on the graph structure involving some
latent variables zi of length d for each node, interpreted as latent representations.

Inference model (encoder):

q(Z ∣A) =
n

∏
i=1
q(zi∣A) where q(zi∣A) = N(zi∣µi,diag(σ2

i
)) .

Gaussian parameters are learned using two GNNs: µ = GNNµ(A) and logσ = GNNσ(A) .

Generative model (decoder):

p(A∣Z) =
n

∏
i=1

n

∏
j=1
p(Aij∣zi, zj), where p(Aij = 1∣zi, zj) = σ(zT

i
zj) .

Training: maximize a tractable lower bound of the model’s likelihood (ELBO):

L = Eq(Z ∣A)[logp(A∣Z)] −DKL(q(Z ∣A)∣∣p(Z))
by gradient descent, with a Gaussian prior p(Z) = ∏ip(zi) = ∏iN(zi∣0, I). DKL(⋅, ⋅) is the Kullback-Leibler divergence.

IV - Scaling-Up Graph AE and VAE with Degeneracy

Despite promising results, graph AE and VAE suffer from scalability issues:
Inner product decoding suffers from a O(dn2) complexity
Training complex GNN encoders (e.g. spectral models, see [3]) might also be costly!

→ We introduce a framework to scale graph AE and VAE models to large graphs.
Key idea: optimize loss from a subset of nodes, instead of using the entire graph G.

Step 1 - Identify dense parts of G by
computing its core decomposition.

k-core or k-degenerate version of G = largest
subgraph of G for which every node has a degree
≥ k within the subgraph.
Fast O(m) computation for undirected graphs.
Effective tool to extract representative subgraphs [3].

3-core
2-core
1-core
0-core

Step 2 - Train (V)AE on k-degenerate
subgraph of G.

We only derive latent vectors for this subgraph.
Graph AE/VAE: still complex, but now the input
subgraph is much smaller than G.
k is a parameter to tune (perf./speed trade-off).

↓

z1

z2

z3 z4 z5

z6

z7

↓
Step 3 - Infer other vectors using a
simple propagation heuristic.

We introduce a theoretically founded propagation
scheme (see paper [3] for technical details).
Linear comb. of already learned latent vectors.
Propagation in O(m) time complexity.

z1

z2

z3 z4 z5

z6

z7

z8 z9

z15 z17 z18

z10

z11

z20
z13

z12

z14

z19z16

z22

z21
z23

V - Experimental Analysis

We provide an in-depth evaluation of our framework on:
5 real-world graphs: CORA, CITESEER, PUBMED, GOOGLE, PATENT (2.7K to 3M nodes).
10 variants of graph AE and VAE models from existing literature.
2 graph learning tasks: Link Prediction and Node Clustering

Model Size of input Mean Perf. on Test Set (in %) Mean Running Times (in sec.)
k-core (nb nodes) AUC AP k-core dec. Model train Propagation Total Speed gain

VAE on G - 83.02 ± 0.13 87.55 ± 0.18 - 710.54 - 710.54 -
on 2-core 9 277 ± 25 83.97 ± 0.39 85.80 ± 0.49 1.35 159.15 0.31 160.81 x 4.42
on 3-core 5 551 ± 19 83.92 ± 0.44 85.49 ± 0.71 1.35 60.12 0.34 61.81 x 11.50
on 4-core 3 269 ± 30 82.40 ± 0.66 83.39 ± 0.75 1.35 22.14 0.36 23.85 x 29.79
on 5-core 1 843 ± 25 78.31 ± 1.48 79.21 ± 1.64 1.35 7.71 0.36 9.42 x 75.43

...
on 8-core 414 ± 89 67.27 ± 1.65 67.65 ± 2.00 1.35 1.55 0.38 3.28 x 216.63
on 9-core 149 ± 93 61.92 ± 2.88 63.97 ± 2.86 1.35 1.14 0.38 2.87 x247.57

Spectral emb. - 83.14 ± 0.42 86.55 ± 0.41 - 31.71 - 31.71 -
(best baseline)

Table: Link Prediction on PUBMED graph (n=20K, m=44K), using graph VAE model from [2] on all cores

Model Size of input Mean Perf. on Test Set (in %) Mean Running Times (in sec.)
k-core (nb nodes) Mutual Information k-core dec. Model train Propagation Total

VAE on 14-core 46 685 25.22 ±1.51 507.08 6 390.37 120.80 7 018.25 (1h57)
on 15-core 35 432 24.53 ± 1.62 507.08 2 589.95 123.95 3 220.98 (54min)
on 16-core 28 153 24.16 ± 1.96 507.08 1 569.78 123.14 2 200.00 (37min)
on 17-core 22 455 24.14 ± 2.01 507.08 898.27 124.02 1 529.37 (25min)
on 18-core 17 799 22.54 ± 1.98 507.08 551.83 126.67 1 185.58 (20min)
node2vec - 24.10 ±1.64 - 26 126.01 - 26 126.01 (7h15)

(best baseline)

Table: Node Clustering on PATENT graph (n = 3M, m = 14M), using graph VAE model from [2] on 14 to 18 cores (over 64)
Note: the graph is too large to compare to ”VAE on G”... however, our approaches are competitive w.r.t. baselines

Main takeaways:
Significant scalability improvement, while performance preserved for largest cores.
Scaled AE/VAE are competitive w.r.t. DeepWalk, node2vec, LINE (+ spectral embedding for medium-size graphs)

Next steps:

Extending the framework to attributed graphs? See our experiments in [3]
Extending graph AE/VAE to directed graphs? See our recent preprint [4]
Current works in progress:
◻ Towards theoretical guarantees for k-core approximations
◻ Graph AE/VAE for dynamic graphs
◻ Graph AE/VAE for large-scale music recommendation

References
[1] P. Goyal and E. Ferrara. Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, 151:78–94, 2018.
[2] T. N. Kipf and M. Welling. Variational graph auto-encoders. NeurIPS Workshop on Bayesian Deep Learning, 2016.
[3] G. Salha, R. Hennequin, V. A. Tran, and M. Vazirgiannis. A degeneracy framework for scalable graph autoencoders. IJCAI, 2019.
[4] G. Salha, S. Limnios, R. Hennequin, V. A. Tran, and M. Vazirgiannis. Gravity-inspired graph autoencoders for directed link prediction. Arxiv, 2019.

Third Edition of the Data Science Summer School (DS3), 2019 research@deezer.com

	title

