A Degeneracy Framework for Scalable Graph

Guillaume Salha'%, Romain Hennequin!, Viet-Anh Tran!, Michalis Vazirgiannis?

Autoencoders

POLYTECHNIQUE

deezer ;

1 Deezer Research & Development, Paris, France
2 LIX, Ecole Polytechnique, Palaiseau, France

Context:

m Graphs have become ubiquitous in the Machine Learning community.

m Learning node embeddings, i.e. low dimensional vector representations of nodes in which
similar nodes are close, appears as an effective way to extract meaningful information from
graph structures.

m Graph autoencoders (AE) and variational autoencoders (VAE) recently emerged as
powerful node embedding methods.

m However, existing graph AE and VAE suffer from scalability issues, and all
experiments are limited to relatively small graphs (<20K nodes).

--

m We introduce a general framework to scale graph AE and VAE models, leveraging
graph degeneracy concepts (k-core decomposition).

m We apply this framework to five real-world datasets and two learning tasks. These are the
first applications of graph AE/VAE to large graphs with up to millions of nhodes/edges.

m We empirically show that our approach significantly improves scalability while preserving
performance. We also achieve competitive results w.r.t. alternative node embeddings
methods such as node2vec and DeepWalk.

This work [3] will be presented at the IJCAI 2019 international conference.

Il - Representation Learning on Graphs

We consider an undirected graph G = (V, £) with |[V| = n nodes, |£| = m edges,
without self-loops. A is the n x n adjacency matrix of G, weighted or not.

Node Embedding paradigm: instead of directly working at the graph level, map

nodes into a low-dimensional vector space Z.
m Node 2 € YV — latent vector z; of size d < n.
m convenient for challenging tasks, e.g. missing link prediction and node clustering [1].

—@ 0.10 .
N/ N\ o]
‘ 1 \ ﬂ.ﬂﬂ- .
/@ e 0.06}
.. . :_. ",
(T 0.04} ® 9
™ e /e oM g
) \\| ¢ —W RS ® 0.00} .
'-L‘_-. r - k 1 p N .- - o~ h ~. .
“."’” Pt I\ NN ® -0.02]
P L ~ /| NW/ O N -0.04 ®
p o . LY -_-" _nlnE | '
O @) 0902 —0.1 0.0 0.1 0.2 0.3 0.4

(Images from https.//tkipf.github.io/).

lll - Graph Autoencoders (AE) and Variational Autoencoders (VAE) ‘

Graph AE and VAE recently emerged as powerful node embedding methods [2]

— successful applications to link prediction, node clustering, recommendation, graph generation...

Graph AE: unsupervised learning of a node embedding (encoding) from which

reconstructing the graph (decoding) is possible.
m Encoder step: learn n x d embedding matrix Z, stacking up latent vectors z;,.

m Usually the output of a Graph Neural Network (GNN):

Z = GNN(A)
m Decoder step : reconstruct A using inner products between latent variables with sigmoid activation:
A=0(ZZ")

m Training: minimize reconstruction loss ||A - A||r, by stochastic gradient descent.

GNN Encoder

IP Decoder

Graph VAE: assume a probabilistic model on the graph structure involving some
latent variables z; of length d for each node, interpreted as latent representations.

m Inference model (encoder):

4(Z14) =[] a(=1A) where g (=] 4) = N'(zilui,diag (7).

m Gaussian parameters are learned using two GNNs: and

logo = GNN,(A).

1 =GNN,(A)

m Generative model (decoder):

p(A|Z) = [111p(Aijlzis 2;), where p(A;j = 1]z;, 2;) = o (2] 25).

i=1 j=1

m Training: maximize a tractable lower bound of the model’s likelihood (ELBO):

£ =Eyz4)| logp(A|2) | - Dx1(a(Z]4)(p(2))

by gradient descent, with a Gaussian prior p(Z) = [1; p(2;) = [1; M (2|0, I). Dk1(-,-) is the Kullback-Leibler divergence.

IV - Scaling-Up Graph AE and VAE with Degeneracy

Despite promising results, graph AE and VAE suffer from scalability issues:
m Inner product decoding suffers from a O(dn?) complexity
m Training complex GNN encoders (e.g. spectral models, see [3]) might also be costly!

— We introduce a framework to scale graph AE and VAE models to large graphs.
Key idea: optimize loss from a subset of nodes, instead of using the entire graph G.

m k-core or k-degenerate version of G = largest
subgraph of G for which every node has a degree
> k within the subgraph.

m Fast O(m) computation for undirected graphs.
m Effective tool to extract representative subgraphs [3].

m We only derive latent vectors for this subgraph.

m Graph AE/VAE: still complex, but now the input
subgraph is much smaller than G.

m k is a parameter to tune (perf./speed trade-off).

EStep 3 - Infer other vectors using a
. simple propagation heuristic.

m We introduce a theoretically founded propagation
scheme (see paper [3] for technical details).

m Linear comb. of already learned latent vectors.
m Propagation in O(m) time complexity.

V - Experimental Analysis *

We provide an in-depth evaluation of our framework on:
m 5 real-world graphs: CORA, CITESEER, PUBMED, GOOGLE, PATENT (2.7K to 3M nodes).
m 10 variants of graph AE and VAE models from existing literature.
m 2 graph learning tasks: Link Prediction and Node Clustering

Model Size of input Mean Perf. on Test Set (in %) Mean Running Times (in sec.)
k-core (nb nodes) AUC AP k-core dec. Model train Propagation Total Speed gain
VAEon G - 83.02 +0.13 87.55 + 0.18 710.54 710.54 -
on 2-core 9277 +25 83.97 + 0.39 85.80 + 0.49 1.35 159.15 0.31 160.81 x4.42
on 3-core 5551 +19 83.92 +0.44 85.49+0.71 1.35 60.12 0.34 61.81 | x11.50
on 4-core 3 269 + 30 82.40 + 0.66 83.39 +0.75 1.35 22.14 0.36 23.85 | x29.79
on 5-core 1843 £ 25 78.31 +1.48 79.21 +1.64 1.35 7.71 0.36 9.42 | x75.43
on 8-core 414 + 89 67.27 +1.65 67.65+2.00 1.35 1.55 0.38 3.28 |[x 216.63
on 9-core 149 + 93 61.92+2.88 63.97 +2.86 1.35 1.14 0.38 2.87 | x247.57
Spectral emb. 83.14 + 0.42 86.55 + 0.41 31.71 31.71
(best baseline)

Table: Link Prediction on PUBMED graph (n=20K, m=44K), using graph VAE model from [2] on all cores

Model Size of input Mean Perf. on Test Set (in %) Mean Running Times (in sec.)
k-core (nb nodes) Mutual Information k-core dec. Model train Propagation Total
VAE on 14-core 46 685 25.22 +1.51 507.08 6390.37 120.80 7 018.25(1h57)
on 15-core 35 432 24.53 + 1.62 507.08 2589.95 123.95 3220.98 (54min)
on 16-core 28 153 24.16 + 1.96 507.08 1569.78 123.14 2 200.00 (37min)
on 17-core 22 455 24.14 + 2.01 507.08 898.27 124.02 1 529.37 (25min)
on 18-core 17 799 22.54 + 1.98 507.08 551.83 126.67 1 185.58 (20min)
node2vec 24.10 +1.64 26 126.01 26 126.01 (7h15)
(best baseline)

Table: Node Clustering on PATENT graph (n = 3M, m = 14M), using graph VAE model from [2] on 14 to 18 cores (over 64)
Note: the graph is too large to compare to "VAE on G”... however, our approaches are competitive w.r.t. baselines

Main takeaways:
m Significant scalability improvement, while performance preserved for largest cores.
m Scaled AE/VAE are competitive w.r.t. DeepWalk, node2vec, LINE (+ spectral embedding for medium-size graphs)

Next steps:

= Extending the framework to attributed graphs? See our experiments in [3]
= Extending graph AE/VAE to directed graphs? See our recent preprint [4]

m Current works in progress:

o Towards theoretical guarantees for k-core approximations
o Graph AE/VAE for dynamic graphs
o Graph AE/VAE for large-scale music recommendation

--

References

[1] P. Goyal and E. Ferrara. Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, 151:78—94, 2018.
[2] T. N. Kipf and M. Welling. Variational graph auto-encoders. NeurlPS Workshop on Bayesian Deep Learning, 2016.

[8] G. Salha, R. Hennequin, V. A. Tran, and M. Vazirgiannis. A degeneracy framework for scalable graph autoencoders. I[JCAI, 2019.

[4] G. Salha, S. Limnios, R. Hennequin, V. A. Tran, and M. Vazirgiannis. Gravity-inspired graph autoencoders for directed link prediction. Arxiv, 2019.

2019

(DS3) ,

Third Edition of the Data Science Summer School

research@deezer.com

	title

