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Executive summary

I Deep Reinforcement Learning (DRL) applications to finance are still unknown, whereas it is the technique of
choice in games and has reached spectacular levels of efficiency, robust in non stationary environments.

I In this work, we apply deep policy gradient methods to optimal trading decision.
I We show this leads to acceptable results and provide a model free alternative to rule based trading

algorithms.

Motivating Questions

I Can an artificial agent learn to
trade successfully? [Yes]

I Can data non-stationarity be
solved? [Yes]

I Can we do with a few thousands
points? [Yes]

I If markets change, can the agent
act appropriately? [Yes]

Key concepts

I Problem solved using A3C
method as in [4] and [3]

I Non Markovianity handled by
large buffer (20 days)

I Q function: 2 × 256 ELU +
softmax activation

I Reward with Sharpe ratio for
better risk balance than [1] or [2]

I Iteration though deep policy
gradient method faster than [5]

Model

Experiment

I Done on Facebook stock
I Train: 01June2012 to 31May2018

(1,509 days = 87.7%)
I Test: 01June2018 to 04Apr2019

(212 days = 12.3%)
I Train mostly bullish
I Test quite different from train
I Impact of learning rate
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