Adversarial training gives an

illusion of privacy-preserving

representation learning.

Representation Learning for Privacy-Preserving Speech Recognition

Brij Mohan Lal Srivastava, Aurélien Bellet, Emmanuel Vincent, Marc Tommasi

CONTEXT

 Speech contains sensitive information, such as identity, gender, emotions, intentions, personality, etc.

APPROACH

Private representation shall be built on device/locally

RESULTS

	fbank	α = 0	α = 0.5	α = 2.0
WER		10.9	12.5	12.5
ACC	93.1	46.3	6.4	2.5

Open-set

verification

Table 1: Splits of Librispeech used in our experiments.

dataset	data split	# utts	duration (h)
	train-960	281,231	960.98
data-full	test-clean	2,620	5.40
	dev-clean	2,703	5.39
	test-other	2,939	5.34
	dev-other	2,864	5.12
	train-adv	27,535	97.05
data-adv	dev-adv	502	1.77
	test-adv	502	1.77
	train-spkv	373,985	1,388.79
data mla	train-plda	422,491	1,443.96
ααια-spκν	test-clean-enroll	438	0.75
	test-clean-trial	21,650	51.98

Table 2: Detailed description of the trial set (test-clean-trial)for speaker verification experiments.

	Male	Female
# Speakers	13	16
# Genuine trials	449	548
# Impostor trials	9,457	11,196

 Sent to cloud for various processing

METHOD

 A combination of adversarial branch within ASR might induce speaker-invariance

EER Pooled	5.72	23.07	21.97	19.56
EER Male	3.34	19.38	18.26	16.26
EER Female	7.48	26.46	24.45	22.45

OBSERVATION

We observe that the WER of the ASR increases slightly on increasing the privacy tradeoff parameter from 0 to 2.0

As expected, the speaker classification accuracy decreases. But counterintuitively, the EER decreases instead of increasing.

DISCUSSION

The dramatic anonymization achieved over closed set does not match with open set verification results. Hence we conclude that adversarial training does not immediately generalize to produce anonymous representations

As future work, we plan to investigate several parameters, such as, design choices for adversarial branch, stable range of α , number of speakers, etc.

Take a picture to download the full paper