Biologically inspired alternatives to backpropagation through time for learning

in recurrent neural networks

Guillaume Bellec™, Franz Scherr®, Darjan Salaj, Elias Hajek, Robert Legenstein and Wolfgang Maass

Institute for Theoretical Computer Science, TU Graz

bellec@igi.tugraz.at

Abstract

1. Back-propagation through time (BPTT) is implausible and requires ample resources.

2. In "eligibility propagation” (e-prop) gradients are computed online without back-propagating
through time.

3. It provides insights for improving truncated BPTT on hard machine learning problems with
long time horizon.

E-prop: a new factorization of the error gradients
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Figure 1: a The theory applies to a large family of RNN models (LSTMs and LIF are considered here). b Forward
pass of BPTT. ¢ Backward pass of BPTT. d Scheme of the computation targeted with e-prop.
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Figure 2: a Definition of the mathematical model. ¢ Scheme of the gradient propagation in e-prop.

In standard BPTT the gradients with respect to the recurrent weights are computed using the

ﬁht
formula: - dE; /<. We show that the same gradients can be re-written as follows
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where learning signals are defined by Lz- = and the eligibility traces are computed using re-

cursively defined eligibility vectors: €. ji o €i T Wﬁgc Then the eligibility traces are
t 62
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E-prop 1: direct feedback alignment in RNNs
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Figure 3: a Scheme of the simplest variant e-prop I: the learning signals Lf;- is replaced by a random projection of the
instantaneous error. The performance is reported on a regression task (b) and on a speech recognition task (textbfc).
d Importantly, e-prop exploits the long ’long short-term memory” of RNN models as the information remains in the
eligibility traces as long as it does in the network itself.
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E-prop 2: One shot learning via Learning-to-learn

For a given family F of tasks, the outer loop optimization trains the parameters of an error module
and the initialization W™ of the neural network, such that the main network learns to solve any
task C of F after one parameter update. The training over tasks of JF called the outer loop, the
parameter update between the demonstration and the test trial 1s the inner loop.
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Figure 4: a Network architecture, the learning signal is provided by a separate error module. The error module is
trained on the outer-loop. b The movement had to be performed by a two joint arm, and the target trajectory is two
dimensional trajectory generated randomly. ¢ Network activity after outer loop training. The activity 1s displayed on
the first and single presentation of the motion to be learnt (left) and the test trial (right).

E-prop 3: Boosting truncated BPTT with eligibility traces
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Figure 5: E-prop 3 improves truncated BPTT. a E-prop 3 extends the time horizon towards the past and the future
using eligibility traces and synthetic gradients. b A trial of the copy repeat task. ¢ Performance on the copy-repeat
task.

Conclusions

1. In [2] we provide a new theory for learning in RNNs.

2. For biophysical neuron models, the learning results in learning rule compatible with the exper-
imental data on synaptic plasticity. For a review see [3].

3.In [1], 1t was already shown that spiking neuron can achieve performance comparable to that
of LSTMs when trained with BPTT. It seems that learning rules that can operate online on a
neuromorphic hardware such as Loihi with in-built plasticity can achieve comparable perfor-
mance.
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