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The Problem

Given A ∈ Rm×n, b ∈ Rm, solve Ax = b.

That is, find x ∈ L def= {x |Ax = b}.

•Challenge: This problem is difficult when
m ≫ n (e.g., m = 109)

•Goal: Design a new randomize method for
finding an approximate solution quickly

The “Basic Method” (BM) [1]

One of the ways to solve the problem is via the
following algorithm:
Input: Matrix A, vector b
Parameters: x0 ∈ Rn, stepsize ω > 0,
positive definite matrix B, distribution D
from which to sample matrices
for k = 0, 1, 2, . . . do
Draw a fresh sample Sk ∼ D
HBM

k = Sk(S⊤
k AB−1A⊤Sk)†S⊤

k

xk+1 = xk − ωB−1A⊤HBM
k (Axk − b)

end
Output: xk ≈ x∗

def= arg minx:Ax=b󰀂x − x0󰀂B

Remarks:
•BM generalizes the randomized Kaczmarz

method [2] (who only considered ω = 1, B = I
and very special D)

•BM also generalizes [3] (who only considered
ω = 1)

•The matrix GBM def= ESk∼D [HBM
k ] controls the

speed of the method

A New Method (NM)

•We propose a new method for solving the
problem.

•The method does not require require to
calculate the Moore-Penrose pseudoinverse
appearing in HBM

k .

Input: Matrix A, vector b
Parameters: Same as BM; plus: carefully
designed parameters LS > 0 associated with
every matrix S
for k = 0, 1, 2, . . . do
Draw a fresh sample Sk ∼ D
HNM

k = 1
LSk

SkS⊤
k

xk+1 = xk − ωB−1A⊤HNM
k (Axk − b)

end
Output: xk ≈ x∗

Remarks:
•LSk

is required to satisfy
LS ≥ λmax(S⊤AB−1A⊤S)

for the method to work
•The matrix GNM def= ESk∼D [HNM

k ] controls the
speed of the method

NM vs SGD

Theorem [GER’19] NM is SGD applied to the
problem

min
x∈Rn

f (x) def= E
󰀵

󰀹󰀹󰀹󰀷fS(x) def= 1
2LS

󰀂Ax − b󰀂2
SS⊤

󰀶

󰀺󰀺󰀺󰀸

That is, NM is equivalent to the method:
1 Sample Sk ∼ D
2 xk+1 = xk − ω∇fSk

(xk)

Exactness

Define matrix: Ω def= B−1
2A⊤GNMAB−1

2.

Theorem [GER’19] These statements are
equivalent:
1 L = X def= Argminf (x) (“exactness”)
2 Null

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃(GNM)
1
2 A

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄 = Null(A)
3 Null(GNM) ∩ Range(A) = ∅
4 Null(Ω) = Null(AB−1

2)
Moreover, if D is absolutely continuous, then ex-
actness for the NM is equivalent to exactness for BM

Convergence of iterates

Theorem [GER’19] Let Ω = UΛU⊤ be the
eigenvalue decomposition. Then the random iter-
ates generated by NM converge linearly as follows:

󰀂E[xk − x∗]󰀂2
B ≤ ρk󰀂x0 − x∗󰀂2

B,

where ρ = maxi:λi>0(1 − ωλi(Ω))2. Moreover,
E󰀂xk − x∗󰀂2

B ≤ (1 − θ)k󰀂x0 − x∗󰀂2
B,

where θ = λ+
min(Ω).

Convergence of function values

Let λ+
min and λmax be the smallest positive and

largest eigenvalues of Ω, respectively. Choose
ω ∈ [0; 2λ+

min
λmax

]. Then
E[f (xk)] ≤ (1 − 2λ+

minω + λmaxω
2)kf (x0) (1)

The optimal rate is achieved for ω = λ+
min/λmax, in

which case we get the bound
E[f (xk)] ≤

󰀳

󰁅󰁅󰁃1 − (λ+
min)2/λmax

󰀴

󰁆󰁆󰁄

k
f (x0)

Comparison of rates

If exactness holds for both methods, then
λ+

min(Ω) ≤ λ+
min(B−1

2A⊤GBMAB−1
2)

If B = I, then
λ+

min(A⊤GbmA)
λ+

min(A⊤GnmA) ≤ sup
S

󰁹󰁸󰁸󰁸󰁷λmax(S⊤AA⊤S)
λ+

min(S⊤AA⊤S)
Theorem [GER’19] Let B = I and assume the
ith row of A satisfies 󰀂Ai:󰀂2= 1 for all i. Further,
let D be defined as follows: Sk is a random column
submatrix of I consisting of 2 columns. Finally,
assume that |〈Ai:, Aj:〉|≤ α0 < 1 for all i ∕= j.
Then

λ+
min(A⊤GBMA)

λ+
min(A⊤GNMA) ≤

√
1 + ε

1 − ε
.

This means that NM is at most
√

1+ε
1−ε times slower

than BM in terms of iterations. (However, it can
be much faster in terms of cost of one iteration.)

Adaptive computation of LS

If in each iteration LSk
satisfies

󰀂Axk − b󰀂2
HBM

k
≤ LSk

󰀂Axk − b󰀂2
HNM

k
,

then for NM we have E󰀂xk − x∗󰀂2
B→ 0 linearly.
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