

The Problem

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, solve $\mathbf{A}x = b$. That is, find $x \in \mathcal{L} \stackrel{\text{def}}{=} \{x \mid \mathbf{A}x = b\}.$

- Challenge: This problem is difficult when $m \gg n \; (\text{e.g.}, \; m = 10^9)$
- Goal: Design a new randomize method for finding an approximate solution quickly

The "Basic Method" (BM) [1]

One of the ways to solve the problem is via the following algorithm:

Input: Matrix **A**, vector *b* **Parameters:** $x_0 \in \mathbb{R}^n$, stepsize $\omega > 0$, positive definite matrix \mathbf{B} , distribution \mathcal{D} from which to sample matrices for k = 0, 1, 2, ... do Draw a fresh sample $\mathbf{S}_k \sim \mathcal{D}$ $|\mathbf{H}_{k}^{\mathsf{BM}} = \mathbf{S}_{k} (\mathbf{S}_{k}^{\top} \mathbf{A} \mathbf{B}^{-1} \mathbf{A}^{\top} \mathbf{S}_{k})^{\dagger} \mathbf{S}_{k}^{\top}$ $x_{k+1} = x_k - \omega \mathbf{B}^{-1} \mathbf{A}^\top \mathbf{H}_k^{\mathsf{BM}} (\mathbf{A} x_k - b)$ end **Output:** $x_k \approx x_* \stackrel{\text{def}}{=} \arg \min_{x:\mathbf{A}x=b} ||x - x_0||_{\mathbf{B}}$

Remarks:

- BM generalizes the randomized Kaczmarz method [2] (who only considered $\omega = 1$, $\mathbf{B} = \mathbf{I}$ and very special \mathcal{D})
- BM also generalizes [3] (who only considered $\omega = 1$)
- The matrix $\mathbf{G}^{\mathsf{BM}} \stackrel{\text{def}}{=} \mathbb{E}_{\mathbf{S}_k \sim \mathcal{D}} [\mathbf{H}_k^{\mathsf{BM}}]$ controls the speed of the method

A New Randomized Method for Solving Large Linear Systems

Elnur Gasanov¹

Peter Richtárik^{1,2} Vladislav Elsukov²

King Abdullah University of Science and Technology ¹

A New Method (NM)

• We propose a new method for solving the	Define matrix: $\mathbf{\Omega} \stackrel{\text{def}}{=} \mathbf{B}^{-\frac{1}{2}} \mathbf{A}^{\top} \mathbf{G}^{\mathbb{N}\mathbb{M}} \mathbf{A} \mathbf{B}^{-\frac{1}{2}}$.	If exa
 problem. The method does not require require to calculate the Moore-Penrose pseudoinverse 	Theorem [GER'19] These statements are equivalent:	If B
appearing in \mathbf{H}_{k}^{BM} . Input: Matrix \mathbf{A} , vector b Parameters: Same as BM ; plus: carefully designed parameters $L_{\mathbf{S}} > 0$ associated with every matrix \mathbf{S} for $k = 0, 1, 2, \dots$ do Draw a fresh sample $\mathbf{S}_{k} \sim \mathcal{D}$	 D L = X def Argmin f(x) ("exactness") 2 Null ((G^{NM})^{1/2} A) = Null(A) 3 Null(G^{NM}) ∩ Range(A) = Ø 4 Null(Ω) = Null(AB^{-1/2}) Moreover, if D is absolutely continuous, then exactness for the NM is equivalent to exactness for BM 	The i th r let \mathcal{D} submassure Ther
$\mathbf{H}_{k}^{NM} = \frac{1}{L_{\mathbf{S}_{k}}} \mathbf{S}_{k} \mathbf{S}_{k}^{T}$	Convergence of iterates	
$x_{k+1} = x_k - \omega \mathbf{B}^{-1} \mathbf{A}^\top \mathbf{H}_k^{NM} (\mathbf{A} x_k - b)$ end Output: $x_k \approx x_*$	Theorem [GER'19] Let $\Omega = \mathbf{U} \Lambda \mathbf{U}^{\top}$ be the eigenvalue decomposition. Then the random iter-	This than
Remarks:	ates generated by NM converge linearly as follows: $\ \mathbb{E}[x_k - x_*]\ _{\mathbf{B}}^2 \leq \rho^k \ x_0 - x_*\ _{\mathbf{B}}^2,$	be m
• $L_{\mathbf{S}_k}$ is required to satisfy $L_{\mathbf{S}} \geq \lambda_{\max}(\mathbf{S}^{\top}\mathbf{A}\mathbf{B}^{-1}\mathbf{A}^{\top}\mathbf{S})$ for the method to work	where $\rho = \max_{i:\lambda_i>0}(1 - \omega\lambda_i(\mathbf{\Omega}))^2$. Moreover, $\mathbb{E}\ x_k - x_*\ _{\mathbf{B}}^2 \leq (1 - \theta)^k \ x_0 - x_*\ _{\mathbf{B}}^2$,	If in
• The matrix $\mathbf{G}^{\mathbb{N}\mathbb{M}} \stackrel{\text{def}}{=} \mathbb{E}_{\mathbf{S}_k \sim \mathcal{D}} [\mathbf{H}_k^{\mathbb{N}\mathbb{M}}]$ controls the speed of the method	where $\theta = \lambda_{\min}(32)$. Convergence of function values	then
NM VS SGD	Let λ_{\min}^+ and λ_{\max} be the smallest positive and largest eigenvalues of Ω , respectively. Choose	
Theorem $[GER'19]$ NM is SGD applied to the problem	$\omega \in [0; \frac{2\lambda_{\min}^{+}}{\lambda_{\max}}]. \text{ Then}$ $\mathbb{E}[f(x_{k})] \leq (1 - 2\lambda_{\min}^{+}\omega + \lambda_{\max}\omega^{2})^{k}f(x_{0}) (1)$	[1] Pete Stoc conv <i>arX</i>
$\min_{x \in \mathbb{R}^n} f(x) \stackrel{\text{def}}{=} \mathbb{E} \left[f_{\mathbf{S}}(x) \stackrel{\text{def}}{=} \frac{1}{2L_{\mathbf{S}}} \ \mathbf{A}x - b \ _{\mathbf{SS}^{\top}}^2 \right]$	The optimal rate is achieved for $\omega = \lambda_{\min}^+ / \lambda_{\max}$, in	[2] Tho
That is, \mathbf{NM} is equivalent to the method:	which case we get the bound $\mathbb{F}[f(m_{1})] < (1 + \lambda^{2}/\lambda) + \lambda^{k} f(m_{2})$	Jou
$1 \text{Sample } \mathbf{S}_k \sim \mathcal{D}$	$\mathbb{E}[J(x_k)] \ge (1 - (\Lambda_{\min}) / \Lambda_{\max}) J(x_0)$	[3] Rob Ran
$\mathcal{D}(\mathcal{T}_{l_{\alpha}+1}) = \mathcal{T}_{l_{\alpha}} - (\mathcal{D}(\mathcal{V}) \mathcal{T}_{\alpha} + \mathcal{T}_{l_{\alpha}})$		SIA

NM VS SGD	Let λ_{\min}^+ and λ_{\max} be the smallest positive and largest organization of Ω respectively. Choose
Theorem [GER'19] NM is SGD applied to the	$\omega \in [0; \frac{2\lambda_{\min}^+}{\lambda_{\max}}]$. Then
problem	$\mathbb{E}[f(x_k)] \le (1 - 2\lambda_{\min}^+ \omega + \lambda_{\max} \omega^2)^k f(x_0) (1)$
$\min_{x \in \mathbb{R}^n} f(x) \stackrel{\text{def}}{=} \mathbb{E}\left[f_{\mathbf{S}}(x) \stackrel{\text{def}}{=} \frac{1}{2L_{\mathbf{S}}} \mathbf{A}x - b _{\mathbf{S}\mathbf{S}^{\top}}^2 \right]$	The optimal rate is achieved for $\omega = \lambda_{\min}^+ / \lambda_{\max}$, in
That is, NM is equivalent to the method:	which case we get the bound
\mathbf{I} Sample $\mathbf{S}_k \sim \mathcal{D}$	$\mathbb{E}[f(x_k)] \le \left(1 - (\lambda_{\min}^+)^2 / \lambda_{\max}\right)^k f(x_0) $
$2 x_{l_{1}+1} = x_{l_{2}} - (p \nabla f_{\mathbf{S}} (x_{l_{2}}))$	

- $\omega \vee J \mathbf{S}_k(\omega_k)$ $\mathbf{V}_{\mathcal{K}+1}$

Moscow Institute of Physics and Technology 2

Exactness

Comparison of rates

cactness holds for both methods, then $\lambda^+_{\min}(\mathbf{\Omega}) \leq \lambda^+_{\min}(\mathbf{B}^{-rac{1}{2}}\mathbf{A}^{ op}\mathbf{G}^{ extsf{BM}}\mathbf{A}\mathbf{B}^{-rac{1}{2}})$ $= \mathbf{I}, \text{ then}$ $\frac{\lambda_{\min}^{+}(\mathbf{A}^{\top}\mathbf{G}_{\operatorname{bm}}\mathbf{A})}{\lambda_{\min}^{+}(\mathbf{A}^{\top}\mathbf{G}_{\operatorname{nm}}\mathbf{A})} \leq \sup_{\mathbf{S}} \frac{\sqrt{\lambda_{\max}(\mathbf{S}^{\top}\mathbf{A}\mathbf{A}^{\top}\mathbf{S})}}{\lambda_{\min}^{+}(\mathbf{S}^{\top}\mathbf{A}\mathbf{A}^{\top}\mathbf{S})}$ eorem [GER'19] Let B = I and assume the row of **A** satisfies $\|\mathbf{A}_{i:}\|_{2} = 1$ for all *i*. Further, **O** be defined as follows: \mathbf{S}_k is a random column natrix of \mathbf{I} consisting of 2 columns. Finally, ume that $|\langle \mathbf{A}_{i:}, \mathbf{A}_{j:} \rangle| \leq \alpha_0 < 1$ for all $i \neq j$.

 $\frac{\lambda_{\min}^{+}(\mathbf{A}^{\top}\mathbf{G}_{\mathtt{BM}}\mathbf{A})}{\lambda_{\min}^{+}(\mathbf{A}^{\top}\mathbf{G}_{\mathtt{NM}}\mathbf{A})} \leq \frac{\sqrt{1+\varepsilon}}{1-\varepsilon}.$

means that **NM** is at most $\frac{\sqrt{1+\varepsilon}}{1-\varepsilon}$ times slower **BM** in terms of iterations. (However, it can nuch faster in terms of cost of one iteration.)

Adaptive computation of $L_{\rm S}$

each iteration $L_{\mathbf{S}_k}$ satisfies

 $\|\mathbf{A}x_k - b\|_{\mathbf{H}_k^{\mathsf{BM}}}^2 \leq L_{\mathbf{S}_k} \|\mathbf{A}x_k - b\|_{\mathbf{H}_k^{\mathsf{M}}}^2,$ for **NM** we have $\mathbb{E} ||x_k - x_*||_{\mathbf{R}}^2 \to 0$ linearly.

References

er Richtárik and Martin Takáč. chastic reformulations of linear systems: Algorithms and vergence theory.

Kiv preprint arXiv:1706.01108, 2017.

omas Strohmer and Roman Vershynin. andomized Kaczmarz algorithm with exponential convergence. irnal of Fourier Analysis and Applications, 2008.

pert M Gower and Peter Richtárik. ndomized iterative methods for linear systems. AM Journal on Matrix Analysis and Applications, 36(4):1660-1690, 2015.