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State Representation Learning Experiments

Scaling end-to-end reinforcement learning to control real robots from vision

presents a series of challenges, in particular in terms of sample efficiency.
Against end-to-end learning, state representation learning (SRL) can help learn
a compact, efficient and relevant representation of states that speeds up policy
learning, reduces the number of samples needed, and is easier to interpret [1].
We evaluate several SRL methods on goal based robotics tasks and propose
SRL Split, a new unsupervised model that stacks representations and combines il
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strengths of several of these approaches. This method encodes all the relevant M;}W

features, performs on par or better than end-to-end learning with better sample
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efficiency, and is robust to hyper-parameters change.
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Using RL notation, SRL corresponds to learning a transformation ¢ from
observation o; to state s;. Then we learn a policy m that takes state s; as ’-
input and outputs action a; :
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t t ; Figure 2: Performance (mean and standard error for 8 runs) for PPO algorithm
for different state representations learned in Simulated Omnibot with randomly

initialized target environment.

Our SRL Splits model combines a reconstruction of an image /, a reward (r)
prediction and an inverse dynamic models losses, using two splits of the state
representation s.

Ground Truth Correlation x.por Yrobot Xtarget Ytarget Mean Mean Reward
Ground Truth 1 1 1 1 1 2437 + 1.2
< > L inverse Supervised 0.69 0.73 0.6 0.61 0.66 2439 + 1.8
Random Features 059 0.54 050 042 0.51 2015+ 5.7
L peward Robotic Priors 0.1 0.1 045 054 030 -1.1=x24
Auto-Encoder 050 054 0.20 0.25 0.37 230.27 4+ 3.2
SRL Combination 0.95 096 0.22 0.20 0.58 216.8 5.6
() £ Reconstruction SRL Splits 098 0.98 061 0.73 083 237.8 + 2.1

Figure 1: SRL Splits model: arrows represent model Iearnlng and inference, dashed
frames represent losses computation, rectangles are state representations, circles
are real observed data, and squares are model predictions.

SRL Datasets and Environments

A set of environments from S-RL Toolbox [2] with variable difficulty was
used to assess SRL models covering basic goal-based robotics tasks: mobile
navigation and reaching a 3D position.
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Quantitative Evaluation

We use the Ground Truth Correlation (GTC) metric [2] that allows to compare
the model’s ability to encode relevant information:

GTCy = mJaX|Ps,§(i,j)\ c [0, 1] (1)

with i € [0, ]3]], j € [0, |s|], § = [51; ...; &, and & being the k™ dimension of
the ground truth state vector. The mean of GTC allows to compare learned
states using one scalar value: GTC sy = E[GTC].
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Table 1: GTC, GTCesn, and mean reward performance in RL (using PPO) per
episode after 5 millions steps, with standard error (SE) for each SRL method in
2D Simulated Omnibot with a random target environment.
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Figure 3: From simulation to real robot: Mean reward and standard deviation
for policies trained in simulation (5M steps budget) and replayed in Simulated
and Real Omnibot (250 steps, 8 runs).
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Conclusion

We show the advantages of decoupling feature extraction from policy learning
in RL on a set of goal-based robotics tasks. We also show that random features
are a good baseline versus end-to-end learning, and introduce the SRL Splits
model, which is robust against perturbations and helps transfer to a real robot.

Repository: https://github.com/araffin/srl-zoo
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