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Fig. 1 - Hyperspectral data are collected by scanning rock core
slabs from drillholes. The products from this scanning are
high-resolution RGB images, the hyperspectral datacubes,

and 3D profiler data.
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The Natu re Of Hyperspectral Data ‘s - Fig. 2 - Wavelengths captured by the HCI4 corescan scanning system used in

Visible Light this project, which spatial resolution is 0.25 cm (pixel size), spectral range is
from 444 nm to 2500 nm,
: and spectral resolution is 4 nm (interval of wavelengths).
A spectral measuremen_t Icqrresponds to thﬁ p.erc.entage ?f reﬂectedflll_gfr\]t. Such values correspond to 514 bands. Additionally, the interval from 400 nm to 700 nm is
> recs messorarents v ormeny ol o ferene vt 700 knoun e e Vbl ange (V) the il rom 100 tm o 1000 '
] . y ! 9 ' known as the Near Infrared (NIR) and the interval from 1000 nm to 2500 nm
Multispectral data (MSI) are images that are scanned at 3 to 5 discrete wavelengths. ((,

is known as the Short-wave Infrared (SWIR).
yperspectral data (HSI) are images that contain hundreds of measurement at contiguous wavelengths. W core - 1
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Fig. 5 - How the Hull Correction works. (A) The convex hull and the original spectrum of a pixel.
7 The convex hull corresponds to the upper limit of the pixel spectrum, without its absorption
T features. (B) Spectrum of the same pixel, with the convex hull removed. Corresponds
to a quotient: the original spectrum is divided by the convex hull to produce

the hull removed spectrum.
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Fig. 3 - Hyperspectral images can be perceived as a datacube (A). For each pixel, at a
given spatial position x and y, there are hundreds of values on a third dimension,
which correspond to the reflection measured at different wavelengths -
the spectra of that pixel (B). The datacube can also be seen as a
stack of rasters (bands), where each value
corresponds the percentage of the reflection
at each wavelength (C).
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Fig. 6 - Co-variance Matrixes of the raw data (A) and of the Hull-corrected data (B)
for the rock presented in figure 5.
The co-variance matrix for the raw data shows that there is a high variance on the visible range of the

hyperspectral data, but less variance on the NIR, and even lesser on the SWIR.
Fid. 4 - H ! loa i dentifv mi Is £ tral data: ob ng the distincti o tion feat The SWIR response of minerals is normally highly important, since different minerals exhibit different characteristic
9. % - How S?:;:XSSOQI‘;SO?]%IES;EJIl’ese?orlCyl’]:r:]:)rL?):: ?Mg-or:?hsfh?gri::) a:da(és Cizx'ggte (eFelii(I:?]CCII‘:llf)r?teS;.orp 1on Teattres. absorption features (Fig. *). The co-variance matrix for the same data corrected with the hull removal
shows that most of the variance belongs at the SWIR range. Such variance is important and
necessary when trying to perform mineral classification.

¥ Hyperspectral data represents an unique type of data. The reflection values measured at each pixel are
indexed by wavelength. In other words, the value measured at a certain position on the wavelength is Ry : p v “‘ml"*’.‘ﬂ'ﬂl!'.ﬂ".ﬁ'{?“d YRR
' strictly dependent from the values around it (on the previous and subsequent wavelenghts). 78 1 - 7\ 78 B LN A
| Any analysis and interpretation of this type of data should have into account the autocorrelation between a Wi Ve 1 ' Acknowledgements
| measured point and those points preceding and following it. An example is given in Fig. *, where the |
‘ difference between two different minerals of the same mineralogical family are presented. oy /]
If we remove the wavelength stamps of the hyperspectral data and treat the measured points as 1IvAT NEWBREST

.. independent attributes, a traditional machine learning algorithm will return a low accuracy predicting these '\ \ // MINING LIMITED /_@\
‘ ypes of data. Therefore, the classification methods need to have into account the wavelength stamps o7 | IMNMI=RA SOLVE

| associated with the measurements. I L] T\ A INTERNATIONAL
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Fig. 8 - Unsupervised semantic
segmentation
of hyperspectral data (K-means).

(A) High resolution RGB image of the core

slab. Note the textural contrast evident on

the higher portions of the picture relatively
to the lower portion.

(B) Equivalent hyperspectral image.
(C) Results for mineralogical domains’
classification from raw spectral data.
from K-Means clustering of raw data ull corrected spectral classes from K- Means clusterin (D) Results for the classification on the hull

| corrected spectral data.
(E) Spectral classes of the raw data
classification depicted in 8.B.
(F) Hull corrected spectral classes of the
classification depicted in 8.C.
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Fig. 7 - Unsupervised semantic segmentation of hyperspectral data (K-means).
(A) High resolution RGB image of a core slab from a drillhole. Note the chalcopyrite vein, with oxidized chalcopyrite
surrounding it, and the epidote and chlorite alteration. (B) Equivalent hyperspectral image of the same rock slab.
Note the difference in resolution. (C) Results for mineralogical domains’ classification from raw
\ __/, spectral data. (D) Results for the classification on the hull corrected spectral data. (E) Spectral classes of the raw data
classification depicted in 7.C. (F) Hull corrected spectral classes of the classification depicted in 7.D.
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