
AUTOMATED MINERAL CLASSIFICATION FROM HYPERSPECTRAL DATA 
THROUGH SEMANTIC SEGMENTATION
Rodrigues, A.1; Ailleres, L.1; Armit, R.1; Betts, P.1; Cracknell, M.2; Orovan, E.2; Harris, A.3; Harris, M.3; Harraden, C.4

1. Monash University; 2. Tasmania University; 3. Newcrest Mining Ltd; 4. Corescan Pty

The Nature of Hyperspectral Data

Abstract

A spectral measurement corresponds to the percentage of reflected light 
by the surface of a material, in response to the incidence of a beam of light; 

these measurements are normally collected at different wavelengths. 
Multispectral data (MSI) are images that are scanned at 3 to 5 discrete wavelengths. 

Hyperspectral data (HSI) are images that contain hundreds of measurement at contiguous wavelengths.  

Fig. 3 - Hyperspectral images can be perceived as a datacube (A). For each pixel, at a
 given spatial position x and y, there are hundreds of values on a third dimension, 

which correspond to the reflection measured at different wavelengths - 
the spectra of that pixel (B). The datacube can also be seen as a

stack of rasters (bands), where each value 
corresponds the percentage of the reflection 

at each wavelength (C).  
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- Automate the process of mineral 
identification from image data

- Automatically segment images per 
mineral composition

- Produce mineral maps from 
hyperspectral data

Objectives

Hyperspectral data represents an unique type of data. The reflection values measured at each pixel are 
indexed by wavelength. In other words, the value measured at a certain position on the wavelength is 

strictly dependent from the values around it (on the previous and subsequent wavelenghts). 
Any analysis and interpretation of this type of data should have into account the autocorrelation between a 
measured point and those points preceding and following it. An example is given in Fig. *, where the 

difference between two different minerals of the same mineralogical family are presented. 
If we remove the wavelength stamps of the hyperspectral data and treat the measured points as 

independent attributes, a traditional machine learning algorithm will return a low accuracy predicting these 
types of data. Therefore, the classification methods need to have into account the wavelength stamps 

associated with the measurements. 

Fig. 4 - How spectral geologists identify minerals from spectral data: observing the distinctive absorption features. 
(A) Absorption features for chlinocore (Mg-rich chlorite) and (B) chamosite (Fe-rich chlorite). 
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Fig. 7 - Unsupervised semantic segmentation of hyperspectral data (K-means). 
(A) High resolution RGB image of a core slab from a drillhole. Note the chalcopyrite vein, with oxidized chalcopyrite 
surrounding it, and the epidote and chlorite alteration. (B) Equivalent hyperspectral image of the same rock slab. 

Note the difference in resolution. (C) Results for mineralogical domains’ classification from raw 
spectral data. (D) Results for the classification on the hull corrected spectral data. (E) Spectral classes of the raw data 

classification depicted in 7.C. (F) Hull corrected spectral classes of the classification depicted in 7.D. 

- Study of the spectral signature of 
different minerals in a porphyry-copper 

deposit. 
- Discussion of challenges in the application 

of semantic segmentation to mineral
classification 

from high-resolution vis-NIR-SWIR 
hyperspectral data.

Mineral Hyperspectral Data

Fig. 2 - Wavelengths captured by the HCI4 corescan scanning system used in
 this project, which spatial resolution is 0.25 cm (pixel size), spectral range is 

from 444 nm to 2500 nm, 
and spectral resolution is 4 nm (interval of wavelengths). 

Such values correspond to 514 bands. Additionally, the interval from 400 nm to 700 nm is 
known as the visible range (Vis); the interval from 700 nm to 1000 nm is 

known as the Near Infrared (NIR) and the interval from 1000 nm to 2500 nm
 is known as the Short-wave Infrared (SWIR).  
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Fig. 5 - How the Hull Correction works. (A) The convex hull and the original spectrum of a pixel. 
The convex hull corresponds to the upper limit of the pixel spectrum, without its absorption 

features. (B)  Spectrum of the same pixel, with the convex hull removed. Corresponds 
to a quotient: the original spectrum is divided by the convex hull to produce 

the hull removed spectrum.

Hull Quotient calculation for spectral data

Fig. 6 - Co-variance Matrixes of the raw data (A) and of the Hull-corrected data (B) 
for the rock presented in figure 5. 

The co-variance matrix for the raw data shows that there is a high variance on the visible range of the 
hyperspectral data, but less variance on the NIR, and even lesser on the SWIR. 

The SWIR response of minerals is normally highly important, since different minerals exhibit different characteristic
 absorption features (Fig. *).  The co-variance matrix for the same data corrected with the hull removal

 shows that most of the variance belongs at the SWIR range. Such variance is important and 
necessary when trying to perform mineral classification.  

Fig. 1 - Hyperspectral data are collected by scanning rock core
slabs from drillholes. The products from this scanning are 
high-resolution RGB images, the hyperspectral datacubes, 

and 3D profiler data. 

 Fig. 8 - Unsupervised semantic 
segmentation

 of hyperspectral data (K-means). 
 

(A) High resolution RGB image of the core 
slab. Note the textural contrast evident on 
the higher portions of the picture relatively 

to the lower portion. 
(B) Equivalent hyperspectral image. 

(C) Results for mineralogical domains’ 
classification from raw spectral data. 

(D) Results for the classification on the hull 
corrected spectral data. 

(E) Spectral classes of the raw data 
classification depicted in 8.B. 

(F) Hull corrected spectral classes of the 
classification depicted in 8.C. 


