Joint Approximation

In the context of LGMs, the true joint posterior for a set of observations \(y = \{y_i, i \in I\} \) and a joint set \((x, \theta) \) of latent field and hyperparameters respectively is given by

\[
\pi(x, \theta | y) \propto \pi(\theta | y) \pi(x | \theta) \prod_{i \in I} \pi(y_i | x_i, \theta)
\]

The following posterior marginals are computed internally in INLA[4] using nested Laplace approximations

\[
\tilde{\pi}(y | \theta) \propto \tilde{\pi}(x, \theta | y) \big|_{x = \tilde{x}}
\]

\[
\tilde{\pi}(\theta | y) = \int \tilde{\pi}(\theta | y) \tilde{\pi}(y | \theta) d\theta.
\]

The joint \(\pi(x, \theta | y) \) can be approximated through numerical integration

\[
\tilde{\pi}(x, \theta | y) \approx \sum_k \tilde{\pi}_c(x | \theta, y) \tilde{\pi}(\theta | y) 1(\theta = \theta_k) \Delta_k
\]

where \(k \) describes the number of points in the grid exploration for achieving \(\tilde{\pi}(\theta | y) \).

Methodology for the Joint

How we get the approximation \(\tilde{\pi}(x, \theta | y) \)?

1. the hyperparameters are sampled from the integration points \(\{\theta, i = 1, \ldots, k\} \)
2. for each sampled configuration point a sample is drawn from \(\tilde{\pi}_c(x | \theta, y) \)

We can also extend the joint approximation \(\tilde{\pi}(x, \theta | y) \) exploiting Skew-Normal marginals \(\tilde{\pi}_c(x | \theta, y) \) for the approximation \(\tilde{\pi}(x | \theta) \) through a Gaussian copula [3]. This leads to new transformed values

\[
\tilde{x}_i = \sigma_i(\theta) F^{-1}_i \left[\phi \left(\frac{x_i - \mu_i(\theta)}{\sigma_i(\theta)} \right) + \tilde{\mu}_i(\theta) \right]
\]

where \(x_i \sim N(\mu_i(\theta), \sigma_i(\theta)^2) \). This describes a Skewness Correction within the internal function inla.posterior.sample which extends the default mean correction applying the Standard Skew-Normal cumulative function.

Validating the Joint with SBC

Algorithm 1 SBC[1] applied on a subset \(x_S \)

Input: The joint posterior density \(\pi(x, \theta | y) \) with \(k \) fixed; number of replicated data sets \(M \) and dimension \(S \) for \(x_S = \{x_i, i \in S\} \)

Output: p-value for testing if the joint approximation is biased in the \(i^{th} \) marginal of \(x_S

1. for \(j = 1 : M \) do
2. Solve \(Q \Sigma = I \);
3. Extract \(\Sigma_{SS} \) and solve \(\Sigma_{SS} \Sigma_{SS} = I_{SS} \);
4. Draw \(x_S^{(1)} \sim N(\mu_S, Q_S) \);
5. Generate a data set \(y \) from \(\pi(y | x_S, \theta_k) \);
6. Run the sampler on dataset \(y \) and get an approximation for the joint subset \(\pi_S(i) \);
7. for \(i = 1 : S \) do
8. Label \(\pi_S(i) \) as the \(i^{th} \) marginal component of \(x_S(i) \);
9. Label \(x_S^{(0)} \) as the \(i^{th} \) marginal component of \(x_S(0) \);
10. Get \(p_{ij} = Pr(x_S^{(0)} < x_S^{(1)} | x_S^{(0)} \sim \pi_S(i)) \);
11. end for
12. end for
13. for \(i = 1 : S \) do
14. Test the symmetry of the distribution of \(\{p_{ij}\} \);
15. If rejected the \(i^{th} \) marginal is biased
16. end for

References

