ELF: Embedded Localisation of Features in pre -trained CNN
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Abstract . ELFIs a novel feature detector based only on
iInformation embedded Inside a CNN already trained on a
standard learning task (e.g. classification) Thisinformation Is
extracted from the gradient of the feature map with respectto
the Input Image. It provides a saliency map with local
maxima on the relevant keypoint locations. We compare our
method to hand-<crafted and learned feature matching y
pipelines and reach comparable performances although our 2. imagelevel 3. Backpropagation 6. Keypoints
method requires neither supervisedtraining nor finetuning. Tenins
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1) Saliencymap YQ® "O(Q® O ™O. I) Interpolate the feature
I1) Adaptive threshold (Kapur). map on detected

1) Non-Maxima Suppression(NMS). keypoints. Steps1-6: Embedded detector.
'~ e Steps: 78 proxy descriptor.

State -of -the -Art

Detector Descriptor Hand-crafted Learned Full supervision Iis the standard training method for recent
ELF X X Semisupervised detectordescriptor. It requires corresponding keypoints generated
L FNet X X Supervised with either an existing detector or with Structurefrom Motion.
SuperPoint X X Supervised Our method is semi -supervised : the CNN may require full
LIET X X Supervised supervision when trained on the standard task but it does not
SIET X X X require corresponding keypoints
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Results
General performance
Our variants SOTA
50 | a ] We derive ELFon three classification networks as
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EL.Fsallency (rlght). IS dlstlngt from_ the image gradlept 8l FP | T . networks Overall VGG provides the best
(middle). the saliency still activates on intensity 2 : Bz N variation: we assumethat this is becauseit has the
gradients but only keeps the most informative ones 7 2“' b'ggestt, feature space, hence better discriminative
: ) ; | ] roperties.
based on their contribution to the CNN feature maps, ’ ' vethods ’ ' vethods Prop |
hence the sparserand more informative signal. webcam: Repeatabilty Webear: matching Score ELF compares with stateottheart on HPatches
100 ) 100 (SuperPoint)and slightly outperformsit on Webcam
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may come from a poor data generalisation from

60 - their training data.
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Robustnesgerformance

Scale Methods that process multiple
scale of the same image (e.g. LIFT,LF |
Net) can get outperformed by the one ~————}

that delegate the multiscale processing
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Repeatability
Matching scores

The repeatability variance across methods is low
which justify the matching score as a more
discriminative metric of the detectors
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and localisation information learnt by a CNN to
complete a task are as relevant as when the
CNN s trained specifically for feature matching.

' Orientation:  All  methods without

MetrICS__ [4] _ _ explicit orientation estimation degrade ..| —
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2. Matching Score Percentageof keypoints that are nearest neighbours in | | Lot T iy T

both image space and descriptor space. 3D Viewpoint: All methods degrades |~
similarly when the change increases

Test datasets Integration performance
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Qualitative results (before RANSAGbased homography estimation)
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