Learn-As-You-Fly (LAYF): A Distributed Algorithm for Joint 3D Placement and User Association in Multi-UAVs Networks

Hajar El Hammouti1, Mustapha Benjillali2, Basem Shihada1, Mohamed-Slim Alouini1

1King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah Province, KSA, 2STRS Lab, National Institute of Posts and Telecommunications (INPT), Rabat, Morocco.

Objective

The objective is to efficiently place the UAVs in the 3D plan and associate the users in order to reach an efficient value of the downlink sum-rate of the network.

- The majority of existing works either consider a single UAV or assume an interference-free environment [1].
- Moreover, they typically set up centralized algorithms to reach the best network performance [2].

Three challenges to address:

1. Optimize the 3D placement in a way that reduces interference and increases the aggregate rate.
2. Associate the users while satisfying their QoS, and respecting the maximum bandwidth of UAVs.
3. Design a distributed algorithm that, when implemented on UAVs, achieves reliable solutions.

Problem Formulation

\[
\max_{x_i,y_i,h_i} \sum_{i=1}^{I} x_i y_i h_i
\]

s.t. \(x_i^\text{min} \leq x_i \leq x_i^\text{max}, y_i \in \mathbb{R}, h_i \in \mathbb{R} \)

\(x_i^\text{min} \leq y_i \leq x_i^\text{max}, y_i \in \mathbb{R}, h_i \in \mathbb{R} \)

\(x_i^\text{min} \leq h_i \leq x_i^\text{max}, y_i \in \mathbb{R}, h_i \in \mathbb{R} \)

\(a_i \in \{0,1\}, x_i \in \mathbb{R}, h_i \in \mathbb{R} \).

The problem is mathematically challenging as it involves: a non-convex objective function, and non-convex and non-linear constraints.

The underlying optimization problem is a mixed integer non-linear programming (MINLP).

It is, moreover, NP-hard (due to the users-UAVs association that can be formulated as the well-known knapsack problem).

Requested data rate

\[R_i = h_i \log_2(1 + \frac{g_i^2 d_i^2}{\sigma_i^2 + \sum_{j \neq i} g_j^2 d_j^2}) \] (2)

Path Loss

\[L_i(d_i) = \left(\frac{4\pi d_i}{c}\right)^2 \left(\frac{1}{h_i} + \frac{1}{h_j}
ight)^2 \] (3)

Approach

We propose an algorithm referred to as Learn-As-You-Fly (LAYF) that iteratively breaks the underlying optimization problem into three subproblems: 2D UAVs positioning, the altitude optimization, and the users-UAVs association.

1. Users-UAVs association: a distributed matching scheme that allocates the bottlenecks of the bandwidth and guarantees the required quality of service.
2. 2D UAVs positioning: the 2D coordinates are updated using a modified K-means approach where UAVs dynamically change their 2D positions in order to reach the barycenter of the served ground users.
3. Altitude optimization: UAV altitudes are adjusted by only optimizing a local utility function using best-response dynamics.

Simulation Results

Figure: 3D configuration with UAVs trajectories for LAYF approach compared with LAYF-Nearest and centralized approaches.

Figure: (a) Algorithms convergence (b) Bandwidth effect.