Estimating heterogeneous treatment effects to inform targeting of national health insurance programmes

Noemi Kreif, Karla Diaz-Ordaz*

*Karla.Diaz-Ordaz@lshtm.ac.uk

1. Introduction

- Since the late 90s, Indonesia has introduced health insurance policy, aiming to 100% coverage
- Health insurance expected to improve health through increasing health care utilisation
- Interest in heterogeneity in treatment effects to inform targeted programme expansion
- **Aim**: explore drivers of heterogeneity in health insurance effect on assisted birth by:
 - Targeted Maximum Likelihood Estimation (TMLE) with stacked machine learning (Super Learner, SL)

2. Causal estimands

- **outcome**: Y = assisted birth, coded 1, \(n = 8574 \)
- **treatment**: \(\{X \} = \text{insurance, coded 1, } n = 1053 \)
- Under assumptions A1: no interference, consistency and no unobserved confounding, we can identify and estimate from data:
 - \(\text{ATE} = E(Y^1 - Y^0) \)
 - \(\text{ATT} = E(Y^1 - Y^0|X = 1) \)
 - \(\text{ATC} = E(Y^1 - Y^0|X = 0) \)
 - \(\text{CATC} = E(Y^1 - Y^0|X = x) \)

3. IPW and DR

- **ATE** can be estimated by outcome model adjusting for all confounders \(E(Y|X) \), assuming that: \(\text{(A2) the regression model is correctly specified} \)
- alternatively, use propensity score \(p(X) = \frac{E(Y|X)}{E(Y|\bar{X})} \), and estimate via a simple model on exposure using Inverse probability of treatment weighting, assuming \(\text{A3 PS is correctly specified} \)

4. TMLE for ATE and CATC

- **better still** we can use machine-learning (SL, see Panel 5) to estimate the PS and outcome models, reducing model misspecification \(\Rightarrow \text{Double Machine learning or TMLE} \)
- **Step 1** - Estimate PS and mean potential outcome \(\mu^0(x) \) and \(\mu^1(x) \) using SL with library:
 - logistic regression (pair-wise interactions), GAMs, random forests, boosting, BARTs
- **Step 2** - Calculate individual-level treatment effects \(\tilde{\tau}(x) = \tilde{\mu}^1(x) - \tilde{\mu}^0(x) \)
- **Step 3** - use Random Forest for variable importance of effect modifiers; results:
 - Age at child birth
 - Receipt of cash transfer
 - Year of birth (of baby)
 - Can write in Indonesian
- **Step 3** - Estimate ATE(T/C)s and CATCs conditional on some of these variables
 - \(\tilde{\tau}(A,X) \) predictions updated with SL \(\tilde{\tau}(X) \)

5. SuperLearner (SL)

- **Stacking learner using cross-validation to train multiple machine learners**
- **SL** creates an optimal weighted average of the predictions obtained by each learner
- asymptotically as accurate as the best possible prediction algorithm considered.
- **rates of convergence**: depend on the individual learners

6. Causal Forests for ATE and CATC

- **Causal Forests**: DR estimator by (Weighted) estimating equation targets \(\tau(x) \), estimation using random forests with splitting rule to maximise heterogeneity in estimated treatment effect
- uses sample splitting: in one tree, an observation is either used to select splits or estimate \(\tau(x) \), keeping the inference honest
- **Forests** are formed using subsample aggregation with estimated weights
- **Step 1** - Use regression forests to obtain estimates of \(p(X) \) and \(\mu(x) = E(Y|X) \)
- obtain out-of-bag predictions from these, and plug in into
 \[\tau(x) = \frac{\sum w_i(x) \{ Y_i - \mu(x) \} \{ A_i - p(X_i) \}}{\sum w_i(x) \{ A_i - p(X_i) \}} \]
- **Step 2**: grow a “Raw” Causal Forest; allows to split trees on confounders
- **Step 2**: calculate the weights \(w_i(x) \) and
- **Step 2**: obtain variable importance measure to find important effect-modifiers
- **Step 3**: Re-estimate Causal Forest splitting trees on selected variables (from previous step)
- **Step 3**: Obtain predictions using out of bag observations to estimate individual treatment effects and ATE, ATT, ATC and CATCs
- **Use omnibus “best linear predictor” test for the presence of heterogeneity**

7. Results: Effect of on

- **Figure 2**: Estimates for ATE, ATT and CATC conditional on greater effect-modifiers, by TMLE and Causal Forest (CF)

8. Results: Heterogeneous Treatment effects

- The omnibus test found no evidence of heterogeneity \((p = 0.14) \)
- However, it would appear that younger mothers have larger positive effect of insurance on the probability of having a health professional when given birth

9. Conclusions

- **TMLE and Causal Forest report heterogeneity in effects of health insurance on assisted birth. TMLE has narrower CIs.**
- Younger, poorer, less educated mothers benefit more. Larger estimated effect among controls
- **Limitation of subgroup TMLE:**
 - Nuisance parameters estimated to fit full sample (not subgroups)
 - only indirectly learnt about CATE, though subgroups
- **Next**: optimal treatment: allocation rule for next extension of health insurance, maximising benefits (subject to budget constraints and equity)