
 Context and Motivation
- An increasing number of connected objects are also equipped with a GPS device.
- Mobile Crowd Sensing (MCS) is a new paradigm for the collection of spatio-temporal data series.
- Polluscope is a typical use case study based on MCS.
- The general objective is getting insight constantly on individual exposure to pollution everywhere

(indoor and outdoor), while enriching the traditional monitoring system with the collected data by the
crowd.

- There is a great interest of making the analysis context-aware. Our objective is to identify the context
automatically from the collected raw data (i.e. activities and events).

 Main Contribution:
- A multi-dimensional time series segmentation to discover activities and events boundaries in the context of
MCS.

Introduction

 Data acquisition is based on a sensor kit and a mobile device.
 The multi-sensor box collects air quality measurements such as Particulate Matters, NO2, Black

Carbon, Temperature, and Humidity.
 Mobile Apps are used to collect GPS logs and to allow the participants annotate their context.

Our segmentation process is different from trajectory segmentation because we
use complex settings by combining multiple data from different sensors.

 In our process, we use an unsupervised change point detection, followed by a
supervised 2nd level learner trained with a sample deemed to be well-
annotated.

The experiments allowed us to tune the CUSUM hyper parameters, and to
compare between different classification algorithms.

As we have seen with our algorithm, our approach is generic for any MCS data
and can be applied to other multivariate time series segmentation.
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 Problem : Not all the participants thoroughly annotate the change of their context

 Ambient air observations strongly depend on the context.

 Objective: segment the geo-data series into non overlapping segments according to
participants activities by change detection.

 Contribution: the combination of different dimensions in the change point detection, when not all
dimensions may cause or contribute evenly in discovering the change in the participant's context.
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Figure 1: Architecture of our Approach

 Our algorithm is GENERIC. It loops on the dimensions and generates a set
of change point candidates. The post-processing phase merges close
changes from different dimensions. This prepares the data for the
supervised learning phase using a gold set of well annotated data.

 Change Point Candidates are considered weak learners. They are combined
and their score is adjusted automatically by a 2nd level learner (we tested
different algorithms).

CUSUM has no limitation on time series data distribution. 
CUSUM does not require any condition on data 

stationarity.

Ensemble Method Learning

Experiments & Results

The change point detection is a critical problem in time series analysis. Detecting these
transitions is gainful to human activities recognition. In this work, we leverage this method to
discover the transition between activities based on data originated from different sensors. We
design and evaluate a change point detection process for the environmental crowd sensing
data. Experiments on real-world data suggest that combining different dimensions lead to
higher performance for the change points detection.

Abstract

 Compared to the baseline, the experience shows that we did improve the 
performance from 45% to 100% in precision.

 Considering the recall score, Decision Tree and AdaBoost show good recall scores 
with 75% each.

 When comparing the performance of the second level learners' accuracy, all the 
algorithms perform well during the testing phase, Decision Tree and AdaBoost
outperform the other algorithms. During the validation phase, AdaBoost
outperforms all the other algorithms with an accuracy of 93%. 

 Considering the Area Under the ROC Curve (AUC), during the testing phase, 
Decision Tree and AdaBoost outperform the other algorithms with 87.5%. However, 
during the validation phase, AdaBoost outperforms the other algorithms with 89%.
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