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Introduction
Climate change has been at the top of our minds and at the forefront of important political
decision-making for many years [1]. Classification of different types of clouds is substantial
for understanding climate change. Human ability to identify patterns is limited and murky
boundaries between different forms of clouds lead to obstacles in traditional rule-based al-
gorithms cloud features separation [1]. In these situations, machine learning techniques,
particularly deep learning, have demonstrated their ability to mimic the human capacity
for identifying patterns in the clouds using satellite images [2]. This work focuses on seg-
mentation of four subjective patterns of clouds organization [2] (see Fig. 1): Sugar, Flower,
Fish, Gravel.

(a) Sugar (b) Flower (c) Fish (d) Gravel

Figure 1: Canonical examples of the four cloud organization patterns.

Method
Dataset
The dataset used in the analysis is released on the Kaggle platform [1]. The images with
three regions, spanning 21 degrees longitude and 14 degrees latitude, were taken from
NASA Worldview [3]. The labels were created on a crowd-sourcing platform [4]. On cloud
labeling days at two institutes, 68 scientists screened satellite images, identified areas of
cloud patterns in each image, and each image was labeled by approximately 3 different sci-
entists [1]. Ground truth was determined by the union of the areas marked by all labelers
for that image, after removing any black band area from the areas [1]. The ground-truth
masks presented in the dataset are quite noisy meaning they include a lot of areas that ac-
tually do not contain clouds at all. Also, the masks of different classes can overlap. These
two facts significantly increase problem complexity. The resolution of original images is
1400×2100, in our experiments we use downscaled images, namely we work with three
different image resolutions: 352×512, 512×768, 768×1152. Example of images containing
different number of clouds patterns is shown in Fig. 2.

Figure 2: Images of clouds with corresponding masks.

Metric
The mean Dice coefficient (DC) [5] is chosen as the metric to measure the performance of
the model by pixel-wise comparison of the predicted segmentation (Ypred) output and the
corresponding ground truth (Ygt). If Ypred = ∅ and Ygt = ∅, then DC = 1; otherwise, it is
defined as:

2|Ypred ∩Ygt|
|Ypred|+ |Ygt|

(1)

The objective of this research is to develop a DL model that ensures higher accuracy. Thus,
the goal is to maximize the model on the mean DC so that a perfect model achieves an
accuracy of 1.

Architecture and Implementation
This problem was treated as a semantic segmentation task with four different classes.
During the past years numerous architectures (see Fig. 3) have been developed to tackle
the problem of semantic segmentation including the most famous U-Net [6], LinkNet [7],
FPN [8], PAN [9]. In this work, we used U-Net architecture.

Figure 3: Simplified schematic view of the architecture.

We developed a two-stage (S1 and S2) semantic segmentation pipeline [10] (see Fig. 4)
that accepts images with corresponding ground-truth masks and outputs raw (non-
normalized) predictions for each of four classes. Then during the post-processing proce-
dure predictions are normalized with sigmoid function to eliminate masks of insufficient
size. Thus, final processed predictions were generated.

Figure 4: Pipeline.

Experiments
Our main experiments with data included training on two stages with different image res-
olutions and different set of pseudo-labels (PLs). Recently, a semi-supervised approach
became popular and provided improvements in training procedure. We used approach
similar to [11] in which authors first trained an EfficientNet model on labeled images and
used it to generate PLs for unlabeled images; then a larger EfficientNet was trained on the
combination of labeled and PL images [11].

Two sets of PLs were generated:

• Only confident PLs;

• All images from test data selected for PL.

Our hyperparameters configuration is the following:

• Encoder: EfficientNet-B0 [12];

• Augmentations: HorizontalFlip, VerticalFlip, ShiftScaleRotate, GridDistortion, Opti-
calDistortion, and RandomBrightnessContrast [13] – all with 50% probabilities;

• Optimizer: Adam [14];

• Scheduler: ReduceLROnPlateau;

• Stopping criteria: Early Stopping with patience = 5 and min delta = 5e-4

• Post-processing:activation threshold=0.4, min mask size – depends on image resolution;

• 352×512 – 2.5k pixels; • 512×768 – 5k pixels; • 768×1152 – 11k pixels.
• Loss: On S1 stage we trained with BCE Dice Loss, on the S2 stage we trained with Sym-

metric Lovasz [15, 16] Loss.

Results
In this work we have studied how choice of PLs and training with different image resolu-
tions affects results given the noisy dataset. All results can be split in 3 following groups:

• S1 trained with train data + set of confident PLs, S2 trained only on train data.

• S1 trained with train data + PLs of all test images, S2 trained only on train data.

• Both, S1 and S2 stages trained with train data + PLs of all test images.
352×512 512×768 768×1152

352×512

0.64958 0.65486 0.65087
0.64941 0.65356 0.65553
0.64840 0.65603 0.65389
0.64518 0.64925 0.64763

512×768

0.65109 0.65318
0.65590 0.65582
0.65663 0.65394
0.65313 0.64665

768×1152

0.65041
0.65118
0.65141
0.64528

Pseudo-labels confident only stage 1 stage
Pseudo-labels all only stage 1
Pseudo-labels all stage 1 + stage 2
Pseudo-labels confident stage 1 + stage 2

Table 1: Summary of the results.

Conclusion
We have developed a two-stage segmentation pipeline with
post-processing procedure which identifies location of four
cloud organization patterns. We have studied how choice of
PLs and image resolution affects the final results. Surprisingly,
training on the biggest image resolution (768×1152) didn’t
yield the best results. Moreover, training with the confident PLs
consistently couldn’t outperform the result obtained from train-
ing with a set of all test images chosen as PLs.
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