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Reporting greenhouse gas emissions

Hyperspectral satellite images report greenhouse gas concentrations
worldwide on a daily basis.
We focus on methane (CH4) emissions, a very potent greenhouse gas
with global warming potential 85 times higher than that of CO2. Mostly
two sources of anthropogenic methane emissions sources:
•Oil and gas industry. ←− our focus
•Agriculture and waste management.
Oil and gas emissions are concentrated in a few dense clusters around
shale basins (e.g. Permian US, pipelines and major fields in Turkmenistan
or Algeria. . . )
Short list of key emitters, which means that oil and gas sector is both
a low cost and high short term impact greenhouse gas emissions
mitigation target.

Figure 1:Observed plumes due to methane emissions in several shale basins in the US.

One cannot always observe clean plumes as in Figure 1, especially when
the studied area covers a multitude of emitting sources. In this work
we aim at averaging the daily concentration observations, in order to
concentrate the mass around significant emitting sources.
Due to atmospheric transport simple arithmetic averages of emissions
data fail to pinpoint the sources of emissions. We try using Wasserstein
barycenter to address this problem.

Wasserstein Barycenter

Figure 2:Data points are gaussian clouds rotating around the center. Left: Arithmetic
mean. Right: Wasserstein Barycenter (with euclidean cost).

Notations h(·) the discrete entropy and KL(·|·) the KL divergence.

Given a set of images (gk)k∈[1,N ] ∈ (Rn×n
+ )N and a set of cost tensors

(Ck)k∈[1,N ] ∈ (Rn×n × Rn×n)N the Wasserstein barycenter of the (gk)
is defined as
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C(g1, g2) := min
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〈Π, C〉+λh(Π)+µKL(Π1|g1)+µKL(1Π|g2)

where λ, µ ∈ R+ are regularization parameters, αk’s are positive
weights, Π1 ∈ Rn×n (resp. 1Π ∈ Rn×n) with (Π1)ij = ∑

k,l Πi,j,k,l

(resp. (1Π)kl = ∑
i,j Πi,j,k,l).

Total mass is fluctuating in the different images (emissions, missing
pixels, diffusion, . . . ). Here we consider unbalanced transport with
marginal relaxations (Chizat et al., 2018a).
Balanced and unbalanced optimal transport problems are closely related
with fluid mechanics problems (Benamou and Brenier, 2000),(Chizat et
al., 2018b). It seems well suited for our atmospheric transport problem.
Given a cost tensor C, the coefficients Ci,j,k,l = c(xi,j, xk,l) where xi,j
are the coordinates in R2 of the center of pixel (i, j) in the
concentration images, and the cost c can be defined as follow

Eucl. : c(x, y) = ‖x− y‖2 (L2)
Eucl.-Wind : t > 0, wk ∈ R2 the mean wind vector of image gk

c(x, y) = ‖x− y‖2 − t〈wk,Diag(abs(x− y))(x− y)〉 (L2 + W )
WFR : δ > 0, c(x, y) = − log

(
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(
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2δ ∧
π
2

))
(WFR)

Costs (L2) and (L2 + W ) are separable and lead to faster
computations and lower memory storage. (WFR) is not, but enjoys a
nice fluid mechanics interpretation (Chizat et al., 2018b).

Simulated Emissions

Figure 3:Top: Simulated emissions from HYSPLIT with blue dot as source. Bottom:
Left- arithmetic mean, Middle- (1) with cost (L2), Right- (1) with cost (L2 + W ).

Experiments on Real Data

Permian basin

Iran-Iraq-Kuwait region

Figure 4:Blue dots are locations of recently completed oil wells (Permian) or oil fields
(Iran-Iraq-Kuwait) (source: Kayrros analysis). The size of the dots represents produc-
tion level. Top Left: Arithmetic mean, Top Right: (1) with (L2), Bottom Left: (1)
with (L2 + W ), Bottom Right: (1) with (WFR).
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