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Motivating Problem
Standard novelty detection methods

� Aim at bi-partitioning the test

units into observed and previously

unseen patterns

� Rely on an outlier-free training set

to define an appropriate separation

rule

However

� There may be interest in identify-

ing specific sub-structures in the

novel component

� Contamination could blur the ac-

tual separation between manifest

and new groups

Proposed Solution
A two-stage Bayesian RobustAdaptive

Novelty Detector (BRAND) is devised

� Phase I: known patterns are ro-

bustly learnt from the training set

� Phase II: the test units are modeled

with a Bayesian mixture of known

groups plus a novelty term, em-

ploying the training insights to set

informative priors

Where

� Procedures robust against outliers

and label noise are applied in the

first phase

� A non-parametric structure flex-

ibly models the novel term in the

second phase

BRAND model: multivariate case
Learning units X = {(xn, ln)}N

n=1, xn ∈ Rp and group labels ln = j , j ∈ J =
{1, ... , J}
Test units Y = {ym}M

m=1, ym ∈ Rp and unknown labels set H ⊇ J

� Stage I: Robust extraction of prior information

– Minimum Covariance Determinant [4] when p < N
– Minimum Regularized Covariance Determinant [1] when p � N

Group-wise robust location and dispersion estimates µ̂MCD
j and Σ̂

MCD
j are re-

tained

� Stage II: BNP novelty detection in test data

L(y|π, µ,Σ, ω) =
M∏

m=1

[ J∑
j=1

πjφ
(
ym|µj ,Σj

)
+ π0

∞∑
h=1

ωhφ (ym|µnov
h ,Σnov

h )
]

– Known classes: finite mixture of J components, with mixing proportion πj

– Novelty term: Dirichlet Process convoluted with a Normal kernel [3], mod-

eling a potentially infinite number of new groups, with proportion π0

Prior probabilities complete the Bayesian specification(
µj ,Σj

)
∼ NIW

(
µ̂MCD

j , λTr , νTr , Σ̂
MCD
j

)
, j = 1, ... , J

(µnov
h ,Σnov

h ) ∼ NIW (µH , λH , νH ,ΣH) , h = 1, ... , ∞,
π ∼ Dir (a0, a1, ... , aJ) , ω ∼ SB (γ) .

By postprocessing the MCMC chain [2], we are able, for each test unit, to

� Compute posterior probability of being a novelty (PPN)

– A-posteriori assignment to one of the J + 1 class

– Identifiable mixture not subjected to the label switching problem

� Distinguish novelties from anomalies

– Best novelty partition recovered by minimizing the Variation of Information

[5]

– Heuristic based on groups’ size to discriminate outliers from actual new

classes

BRAND in action! BRAND for functional data
� xn, ym realizations of a univariate

stochastic process X (t),
t ∈ T with T ⊂ R

� Θm(t) =
(
fm(t), σ2

m(t)
)

– Functional mean fm : T → R
– Functional noise σ2

m : T → R+

The multivariate BRAND model

modifies as follows:

ym(t)|Θm(t) = fm(t) + εm(t)
εm(t) ∼ N(0, σ2

m(t)), Θm(t)|p̃ ∼ p̃

p̃ =
J∑

j=1
πjδΘj + π0

[+∞∑
h=1

ωhδΘnov
h

]

� Robust priors retrieved by smooth-

ing the training curves via basis

representation

� Example: Near Infrared Spectra of

meat varieties
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Future directions
� Develop efficient algorithms for big-data problems using approximate inference: EM algorithm, Variational Inference

� Extend the BRAND methodology to account for temporal structures

� Adopt a more general specification via Gaussian processes for functional BRAND

� Employ different stik-breaking processes for the novel component
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