A Two-Stage Bayesian Nonparametric Model for Novelty Detection with Robust Prior Information

Francesco Denti

- **h** fradenti.github.io
- ✓ fdenti@uci.edu
- **9** @fradenti7

Andrea Cappozzo

- andreacappozzo.rbind.io
- ✓ andrea.cappozzo@unimib.it
- ♥ @AndreaCappozzo

Francesca Greselin

- **unimib.it**/francesca-greselin
- ✓ francesca.greselin@unimib.it
- **9** @FrancesGreselin

Motivating Problem	BRAND model: multivariate case	BRAND in action!
 Standard novelty detection methods Aim at bi-partitioning the test units into observed and previously 	Learning units $\mathbf{X} = \{(\mathbf{x}_n, \mathbf{I}_n)\}_{n=1}^N$, $\mathbf{x}_n \in \mathbb{R}^p$ and group labels $\mathbf{I}_n = j, j \in \mathcal{J} = \{1,, J\}$ Test units $\mathbf{Y} = \{\mathbf{y}_m\}_{m=1}^M$, $\mathbf{y}_m \in \mathbb{R}^p$ and unknown labels set $\mathcal{H} \supseteq \mathcal{J}$	
 Rely on an outlier - free training set to define an appropriate congration 	 Stage I: Robust extraction of prior information Minimum Covariance Determinant [4] when <i>p</i> < <i>N</i> 	
rule	– Minimum Regularized Covariance Determinant [1] when $p \gg N$ Group-wise robust location and dispersion estimates $\hat{\mu}_j^{MCD}$ and $\hat{\Sigma}_j^{MCD}$ are re-	
■ There may be interest in identify - ing specific sub -structures in the	 Stage II: BNP novelty detection in test data 	
 Contamination could blur the ac- tual separation between manifest 	$\mathcal{L}(\mathbf{y} \boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Sigma},\boldsymbol{\omega}) = \prod_{m=1}^{M} \left[\sum_{j=1}^{J} \pi_{j} \phi\left(\mathbf{y}_{m} \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right) + \pi_{0} \sum_{h=1}^{\infty} \omega_{h} \phi\left(\mathbf{y}_{m} \boldsymbol{\mu}_{h}^{nov}, \boldsymbol{\Sigma}_{h}^{nov}\right) \right]$	
and new groups Proposed Solution	 Known classes: finite mixture of <i>J</i> components, with mixing proportion π_j Novelty term: Dirichlet Process convoluted with a Normal kernel [3], modeling a potentially infinite number of new groups, with proportion π₀ 	
A two-stage Bayesian Robust Adaptive Novelty Detector (BRAND) is devised	Prior probabilities complete the Bayesian specification $(\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}) \sim NIW\left(\widehat{\boldsymbol{\mu}}_{i}^{MCD}, \lambda^{Tr}, \nu^{Tr}, \widehat{\boldsymbol{\Sigma}}_{i}^{MCD}\right), i = 1,, J$	
 Phase I: known patterns are ro- bustly learnt from the training set Phase II: the test units are modeled 	$(\mu_h^{nov}, \boldsymbol{\Sigma}_h^{nov}) \sim NIW(\mu_H, \lambda_H, \nu_H, \boldsymbol{\Sigma}_H), \qquad h = 1,, \infty, \\ \pi \sim Dir(a_0, a_1,, a_J), \qquad \omega \sim SB(\gamma).$	
with a Bayesian mixture of known groups plus a novelty term, em- ploying the training insights to set	By postprocessing the MCMC chain [2], we are able, for each test unit, to Compute posterior probability of being a novelty (PPN) 	
informative priors Where	 A-posteriori assignment to one of the J + 1 class Identifiable mixture not subjected to the label switching problem 	
Procedures robust against outliers and label noise are applied in the first phase	 Distinguish novelties from anomalies Best novelty partition recovered by minimizing the Variation of Information 	
A non-parametric structure flex- ibly models the novel term in the second phase	 [3] Heuristic based on groups' size to discriminate outliers from actual new classes 	
	Future directions	Main References
 Develop efficient algorithms for big-data problems using approximate inference: EM algorithm, Variational Inference Extend the BRAND methodology to account for temporal structures Adopt a more general specification via Gaussian processes for functional BRAND 		 Boudt K, Rousseeuw PJ, Vanduffel S, Verdonck T (2020) The minimum regularized covariance de Statistics and Computing 30(1):113–128 Kalli M, Griffin JE, Walker SG (2011) Slice sampling mixture models. Statistics and Computing 3 Lo AY (1984) On a Class of Bayesian Nonparametric Estimates: I. Density Estimates. The 12(1):351–357 Rousseeuw PJ (1984) Least median of squares regression. Journal of the American st 79(388):871–880
Employ different stik-breaking processes for the novel component		 [5] Wade S, Ghahramani Z (2018) Bayesian Cluster Analysis: Point estimation and credible ball Bayesian Analysis 13(2):559–626

DATA SCIENCE SUMMER SCHOOL

g 21(1):93–105 Annals of Statistics

tatistical association

lls (with Discussion).

BRAND