Machine Learning Models through Motion Capture Data: Revealing **Mechanisms for Person Identification from Sign Language Motion**

[1] Troje, Nikolaus F., Cord Westhoff, and Mikhail Lavrov. "Person identification from biological motion: Effects of structural and kinematic cues." Perception & Psychophysics 67.4 (2005): 667-675. [2] Bigand, Félix, Elise Prigent, and Annelies Braffort. "Person Identification Based On Sign Language Motion: Insights From Human Perception And Computational Modeling." Proceedings of the 7th International Conference on Movement and Computing. 2020. [3] Carlson, Emily, et al. "Dance to your own drum: Identification of musical genre and individual dancer from motion capture using machine learning." Journal of New Music Research 49.2 (2020): 162-177.

Félix Bigand¹, Elise Prigent¹ and Annelies Braffort¹ ¹LIMSI-CNRS, Paris-Saclay University - Orsay, France felix.bigand@limsi.fr

IV. The role of size and shape differences

The first 2 principal components (PCs) extracted by the model when trained on [2]: Ο

 Signers 2 and 3 have different morphologies, but the two-step normalization allows for the assessment of further discriminant features, such as kinematic ones.

V. Feature comparison and interpretation

- Accuracy of identification, with the first 4 PCs: - local positions: **93.8%**
- {local positions, velocities, accelerations}: **94.8%**

• Main takeaways:

- The model is able to identify signers, as recently reported for dance motion [3].
- It still identifies even after having normalized for size and shape, in line with prior human data [1].

Interpreting the PCs (ongoing):

- Which signers are identified by the PC?
- 2. Interpreting the PC in terms of correlation with the input data. (e.g. body inclination)
- 3. Visualizing the PC using motion synthesis. (e.g. exaggerating the PC score)

Acknowledgments

This work has been funded by the Bpifrance investment project "Grands défis du numérique", as part of the ROSETTA2 project (Subtitling RObot and Adapted Translation).

