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Overview

Cross-validation (CV) is a de facto standard for estimating the test error of a prediction
rule. CV produces an unbiased estimate of the test error with lower variance than a
single train-validation split could provide. However, these properties alone are insuffi-
cient for high-stakes applications in which the uncertainty of an error estimate impacts
decision-making. The tools most often used have no correctness guarantees and can be
severely misleading, and thus accurately quantifying the uncertainty of the CV estimate
is essential yet challenging because of its complex dependence structure.

1. We characterize the asymptotic distribution of the CV error and develop two
consistent estimators of the asymptotic variance under weak stability conditions
on the learning algorithm.

2. We provide practical, asymptotically-exact confidence intervals (CIs) for test error
as well as powerful, asymptotically-valid hypothesis tests of whether one learning
algorithm has smaller test error than another.

3. We observe consistent improvements in width and power over the most popular
alternative methods from the literature.

Setting and Notation

Figure 1: k-fold cross-validation

Datapoints (Zi)i≥1 i.i.d. copies of a random element Z0.
Z1:n designates the first n points, and, for any vector B
of indices in [n], ZB denotes the subvector of Z1:n corre-
sponding to ordered indices in B. The number of folds k
can be either fixed or dependent on n.
Given a scalar loss function hn(Zi, ZB) and a set of k
train-validation splits {(Bj, B

′
j)}kj=1 with validation in-

dices {B′j}kj=1 partitioning [n] into k folds, we will use the
k-fold cross-validation error

R̂n , 1
n

∑k
j=1

∑
i∈B′j hn(Zi, ZBj

) (1)

to draw inferences about the k-fold test error

Rn , 1
n

∑k
j=1

∑
i∈B′j E[hn(Zi, ZBj

) | ZBj
]. (2)

Standard inferential target representing the average test error of the k prediction rules
f̂ (·;ZBj

) for j = 1, . . . , k. A prototypical example of hn is squared error or 0-1 loss,

hn(Zi, ZB) = (Yi − f̂ (Xi;ZB))2 or hn(Zi, ZB) = 1[Yi 6= f̂ (Xi;ZB)],

composed with an algorithm for fitting a prediction rule f̂ (·;ZB) to training data ZB
and predicting the response value of a test point Zi = (Xi, Yi).

Algorithmic Stability

Definition 1: Mean-square stability and loss stability

For m > 0, let Z0 and Z ′0, Z1, . . . , Zm be i.i.d. test and training points with Z
\i
1:m

representing Z1:m with Zi replaced by Z ′0. For any function h : Z × Zm → R, the
mean-square stability [2] is defined as

γms(h) , 1
m

∑m
i=1 E[(h(Z0, Z1:m)− h(Z0, Z

\i
1:m))2] (3)

and the loss stability [3] as γloss(h) , γms(h
′), where

h′(Z0, Z1:m) , h(Z0, Z1:m)− E[h(Z0, Z1:m) | Z1:m]. (4)

Many learning algorithms are known to enjoy decaying loss stability (e.g., SGD, ERM,
k-NN, decision trees, ensemble methods), in part because loss stability is upper-bounded
by a variety of algorithmic stability notions studied in the literature. In particular,
γloss(h) ≤ γms(h).

Asymptotic Normality

Theorem 1: Asymptotic normality of cross-validation

Let h̄n(Z0) = E[hn(Z0, Z1:n(1−1/k)) | Z0] and σ2
n = Var(h̄n(Z0)). If the following

conditions hold:

Stability γloss(hn) = o(σ2
n/n),

Uniform integrability (UI) (h̄n(Z0)− E[h̄n(Z0)])
2/σ2

n is a UI sequence,

then
√
n
σn

(R̂n−Rn)
d→N (0,1). (5)

These assumptions are very mild and satisfied by many algorithms.

CV Confidence Intervals & Tests for
k-fold Test Error

• Goal 1: construct an asymptotically-exact (1−α)-confidence interval for the unknown
k-fold test error Rn.

• Proposal: a sample statistic σ̂2
n satisfying relative error consistency, σ̂2

n/σ
2
n

p→ 1, gives
rise to an asymptotically-exact (1− α)-confidence interval,

Cα , R̂n ± q1−α/2 σ̂n/
√
n satisfying limn→∞ P(Rn ∈ Cα) = 1− α, (6)

where q1−α/2 is the (1− α/2)-quantile of a standard normal distribution.

• Goal 2: test whether algorithm A1 improves upon algorithm A2 on the fold partition.

• Proposal: we may define hn(Z0, ZB) = `(Y0, f̂1(X0;ZB)) − `(Y0, f̂2(X0;ZB)) to be
the difference of the loss functions of two prediction rules trained on ZB and tested
on Z0 = (X0, Y0). An asymptotically-exact level-α test is given by

reject H0 ⇔ R̂n < qασ̂n/
√
n, (7)

for H0 : Rn ≥ 0 against H1 : Rn < 0.

Consistent Variance Estimators

For k < n, define the within-fold variance estimator

σ̂2
n,in ,

1
k

∑k
j=1

1
(n/k)−1

∑
i∈B′j

(
hn(Zi, ZBj

)− k
n

∑
i′∈B′j hn(Zi′, ZBj

)
)2

. (8)

As this estimator necessarily excludes the case of leave-one-out CV (k = n), we propose a
second estimator with consistency guarantees for any k: the all-pairs variance estimator

σ̂2
n,out ,

1
k

∑k
j=1

k
n

∑
i∈B′j(hn(Zi, ZBj

)− R̂n)2. (9)

Theorem 2: Consistent estimators of asymptotic variance

If γloss(hn) = o(σ2
n/n) and (h̄n(Z0)−E[h̄n(Z0)])

2/σ2
n is UI, then σ̂2

n,in /σ
2
n
L1

→ 1. If

additionally γms(hn) = o(kσ2
n/n), then σ̂2

n,out /σ
2
n
L1

→ 1.

• The same two conditions—loss stability and UI sequence—grant both a central limit
theorem for CV and an L1-consistent estimate of σ2

n.

• MSS condition γms(hn) = o(kσ2
n/n) especially mild when k = Ω(n) (as in LOOCV).

• Both σ̂2
n,in and σ̂2

n,out can be computed inO(n) time using just the individual datapoint
losses hn(Zi, ZBj

) outputted by a run of k-fold CV. When hn is binary, as in the case
of 0-1 loss, one can compute σ̂2

n,out in O(1) time given access to the overall cross-

validation error R̂n and σ̂2
n,in in O(k) time given access to the k average fold errors.

Numerical Experiments

We compare on Higgs boson and flight delay data our test error CIs (6) and tests for
algorithm improvement (7) with the most popular alternatives from the literature.
These procedures are commonly used and admit both two-sided CIs and one-sided tests,
but, unlike our proposals, none except the hold-out method are known to be valid.
Our procedure (solid blue line) achieves the target coverage probability for the CIs and
target level for the constructed tests, and consistently delivers the smallest width for
the CIs and the best power for the tests, across all sample sizes.

Figure 2: Test error coverage (top) and width (bottom) of 95% confidence intervals. Left: `2-regularized
logistic regression classifier. Right: Random forest regression.

Figure 3: Size when testing H1 : Err(A1) < Err(A2) (top) and power when testing H1 : Err(A2) <
Err(A1) (bottom) of level-0.05 tests for improved test error. Left: A1 = `2-regularized logistic regression,
A2 = neural network classification. Right: A1 = random forest, A2 = ridge regression.

Many more experiments in the paper! [1] https://arxiv.org/abs/2007.12671
https://github.com/alexandre-bayle/cvci

References

[1] Bayle, P., Bayle, A., Janson, L., and Mackey, L. (2020). Cross-validation confidence intervals for test
error. In Advances in Neural Information Processing Systems (NeurIPS).

[2] Kale, S., Kumar, R., and Vassilvitskii, S. (2011). Cross-validation and mean-square stability. In
Proceedings of the Second Symposium on Innovations in Computer Science (ICS). Citeseer.

[3] Kumar, R., Lokshtanov, D., Vassilvitskii, S., and Vattani, A. (2013). Near-optimal bounds for cross-
validation via loss stability. In International Conference on Machine Learning (ICML), pages 27–35.

https://github.com/alexandre-bayle/cvci
https://arxiv.org/abs/2007.12671
https://github.com/alexandre-bayle/cvci

