Influence of Missing Data on Determining the Number of Components for a PLS Regression on
MCAR and MAR mechanism
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Missing data are well-known to be a concern for the applied research. Several methods have been

developed for handling incomplete data. The method of imputation is the process of substituting {
missing data before estimating the relevant model parameters.

Partial Least Squares (PLS) regression is a multivariate model estimated either by the SIMPLS or
NIPALS algorithm. PLS regression has been extensively used in the applied research because of its [
effectiveness in analysing relationships between the outcome and several components. However,

how to handle missing data when using PLS regression is still a matter of debate.

The NIPALS algorithm has the interesting property of being able to provide estimates on incomplete
data. Selection of the number of components to build a representative model in PLS regression
remains an important problem.
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SIMULATION STUDY

DAEf;ﬁ;:ERDA;LON . Data are simulated according to Li et al. (2002) with the true number of components is set to 4. n (number of
(Five dimensi observations) and p (number of variables) with each of the following five dimensions sets:
A4 + n=100and p = 20,
- n=80andp=25,
(MCAR and M:R i « n=60and p= 33,

( IMPUTATION PROCESS ) *n= 40 and p = 50’
PLS REGRESSION MULTIPLE KNN svD * n=20andp =100.
[ e e J [ A J (Package R: V‘M)J { (Package R: bev) . Missing data are created under the MCAR and the MAR assumptions with an increasing proportion of missing data
from 5% to 50% by 5% step.

PLS REGRESSION . Missing data are replaced using multiple imputation (MICE), KNNimpute, and SVDimpute.

REEESREEE) . The number of components is computed using LOO (Leave One Out) cross-validation and 10-fold cross-validation
computed on the incomplete data according to each of two methods: standard and adaptative (selects the
prediction method according to the completeness of the row) (Bertrand et al., 2015). Under multiple imputation, the
number of components has been computed by cross-validation as the modal value of the computed number of

components across all m imputations where m is equal to 100 x the proportion of missing data (White et al., 2011).
. For each combination of the proportion of missing data and matrix dimensions, 1000 replications have been drawn.
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CONCLUSIONS

Our simulation study shows that:
The number of selected components by MICE with Q2-LOO criterion is much closer to the true number of components when the proportion of missing data is small (< 30%)
and n > p, followed by NIPALS-PLSR, KNNimpute and SVDimpute for both the MCAR and the MAR assumptions.
The number of selected components using the Q2-LOO shows a more consistent decreasing pattern of the true number of components for an increasing proportion of missing data
and a decreasing sample size.
The number of selected components by AIC, AIC-DoF and BIC are almost twice as large as the true number of components.
The behaviors of BIC-DoF to selecting the true number of components criterion is not consistent. Their performances increase and then decrease with an increasing proportion of
missing data.
The MICE execution took a long time. For example when n= 100, the proportion of missing data= 10% and under MCAR assumption, the running time of MICE was about 11 times
slower than NIPALS-PLSR .
Whatever the criterion used, the missingness mechanism is also to be considered since it influences the number of selected components.
The true number of components of a PLS regression is difficult to determine, especially for small sample size and when the proportion of missing data is larger than 30%.
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